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Abstract— The world's population is growing, posing 

challenges in an aging society. As we anticipate a rise in 
atrial fibrillation (AF) with aging, there is a growing 
demand for efficient treatment methods. In this research, 
our goal is to partially automate the operation of 3D 
mapping systems used in AF treatment with the CARTO 
system. We analyze the X, Y, and Z coordinate axes data 
labeled LPV, RPV, and CTI extracted from the CARTO 
system. The analysis includes both a single-case dataset 
and a mixed dataset of 10 cases. Initially, we visualize the 
data using principal component analysis. Subsequently, 
we compare the classification accuracy of different 
classifiers—k-Nearest Neighbors, Gaussian Mixture 
Model, SGD Classification, and Linear SVC. While all 
models achieve 1.0 accuracy in the single-case dataset, the 
highest accuracy score in the mixed dataset of 10 cases is 
0.982, obtained by k-Nearest Neighbors.  
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I.  INTRODUCTION 

The world's population has experienced dramatic 
growth in both size and the proportion of elderly 
individuals. Estimated to be 8.0 billion in mid-
November 2022, the global population is projected to 
increase to 9.7 billion in the 2050s and nearly 10.4 
billion in the mid-2080s [1]. Even more, the median age 
of the world’s population will be going to increase from 
26.6 years in 2000 to 37.3 years in 2050 and then to 
45.6 years in 2100 [2]. By 2030, one in six people 
worldwide will be aged 60 years or over, and this 
number is expected to double, reaching 2.1 billion by 
the 2050s. The imminent arrival of a super-aging 
society on a global scale is certain in the very near 
future. The aging society will undoubtedly bring about 
various challenges, particularly in maximizing the 
health and well-being of the elderly, ensuring non-
discrimination in health and social care, and 
researching treatments with the lowest risk and highest 
efficiency. 

Cerebral artery disease, commonly known as 
stroke, stands as a prevalent cause of mortality among 
the elderly, ranking closely behind ischemic heart 
disease. A crucial factor contributing to this disease, 
leading to blood vessel blockage, is atrial fibrillation 
(AF). Particularly prominent in the elderly population, 
AF poses a substantial risk of cardiogenic ischemic 
stroke. Despite the global prevalence of AF being less 

than 1%, its incidence rises significantly among 
individuals aged 80 years and above, reaching 
approximately 7–14% in Western countries and 2–3% 
in Japan. Complications from AF treatment see a 
notable increase in patients aged 75 years and over. 
Consequently, the ongoing demographic shift in the 
global aging population is expected to result in a surge 
of AF cases, affecting an estimated 5–16 million people 
in the United States and over 1 million in Japan by 2050 
[3]. This demographic transition underscores the 
continuing imperative for effective and efficient 
strategies and methodologies in therapeutic and 
caregiving practices for this growing patient 
demographic. 

AF, or atrial fibrillation, is a form of irregular 
heartbeat, or arrhythmia, characterized by irregular and 
chaotic contractions in the upper chambers of the heart 
known as the atria. Normally, the atria work in a 
coordinated manner to pump blood to the lower 
chambers, or ventricles. However, in the case of AF, 
the electrical signals within the atria become 
disorganized, leading to quivering or fibrillation 
instead of the usual coordinated contractions [4]. This 
irregular heartbeat can manifest various symptoms, 
including the heightened risk of stroke, as mentioned 
earlier. To address AF, doctors often employ 
radiofrequency during treatment procedures to 
electrically isolate the affected veins [5]. This involves 
inserting a catheter into the heart, a process that 
demands careful attention to the catheter's position. In 
undertaking AF treatment, the use of fluoroscopy 
equipment and 3-dimensional mapping systems is 
common. These technologies are employed 
strategically to mitigate the potential harmful effects of 
radiation on the human body, emphasizing the 
importance of precision and safety in these medical 
interventions. 

The widely adopted medical 3D imaging 
technology on a global scale is CARTO, initially 
introduced by Biosense Webster, a Johnson & Johnson 
MedTech company, in 1996 [6]. The fundamental 
operation of CARTO relies on a triangular 
electromagnetic source generated by three distinct 
ultra-low magnetic fields, as depicted in Fig. 1A. This 
unique configuration allows for the continuous 
measurement of the catheter's distance from each of the 



three magnetic generators positioned beneath the 
operating table, thereby enabling precise localization of 
the catheter tip in three-dimensional space. 

To enhance accuracy, an external patch is 
strategically placed on the patient's anterior and 
posterior thorax to detect possible unintentional 
movements, as illustrated in Fig. 1B. Fig. 1C provides 
an overview of the typical configuration of the CARTO 
system within the electrophysiology laboratory. This 
advanced technology plays a crucial role in guiding 
medical procedures, providing clinicians with real-
time, accurate insights into the spatial dynamics of the 
targeted areas, ultimately contributing to improved 
patient outcomes. 

While the use of this system is widely popular, 
limitations persist in terms of usage and human error. 
Particularly, during electrocautery procedures, a 
treatment team is tasked with meticulously recording 
the specific points or areas to be treated. This manual 
recording process can be time-consuming, contributing 
to tension among the team members and increasing the 
risk of errors. In response to these limitations, we have 
implemented machine learning algorithms to enhance 
the treatment flow. These interventions are designed to 
improve team efficiency, expedite procedures, and 
minimize error rates. 

The main contributions of the paper includes 

1)  Validation of the classification models for the 
catheter ablation site of CARTO coordinate data.  

2)  Applicability of the proposed model to person-
sensitive CARTO coordinate data. 

3)  Viability of the proposed method without device 
calibration. 

The remaining part of this paper is structured as 
follows. Session II describes coordinate data 
classification. The application of CARTO system is 
introduced in Session III, with dataset of ablation site 
of CARTO system in Session IV. Result of experiment, 
conclusion and future work are in Session V and VI 
respectively. 

II. COORDINATE DATA CLASSIFICATION 

In this section, we present an in-depth analysis of 
the X, Y, and Z coordinate data labeled LPV, RPV, and 
CTI, extracted from the CARTO system. The initial 
step involved employing principal component analysis 
(PCA) to achieve dimension reduction while 
preserving the intrinsic value of the data. This reduction 
facilitated a visual examination of the dataset's 
characteristics. 

Subsequently, a comparative analysis of prediction 
accuracy was conducted using four distinct classifiers: 
k-Nearest Neighbors (k-NN), Gaussian Mixture Model 
(GMM), SGD Classification (SGDClassifier), and 
Linear SVC (LinearSVC). To assess the robustness of 
these models, two distinct datasets were utilized for this 
comparative study: a single-case dataset and a 
combined dataset comprising 10 cases. 

A. k-Nearest Neighbors (k-NN) 

The k-NN algorithm classifies a new data point 
based on the majority class of its k-nearest neighbors in 
the training dataset [7]. Operating in a feature space, k-
NN is effective for datasets with clear patterns. The 
parameter 'k' dictates the number of neighbors 
considered during predictions, with smaller 'k' values 
making the model sensitive to noise and larger 'k' 
values resulting in smoother decision boundaries. 
During training, distances between data points are 
calculated using the training dataset, and predictions 
are made based on the majority vote of the k-nearest 
neighbors. 

B. Gaussian Mixture Model (GMM) 

GMM, a powerful statistical tool for pattern 
recognition based on clustering techniques [8], was 
employed in this study. By representing data as a 
mixture of Gaussian distributions, GMM 
accommodates diverse patterns. Its versatility extends 
across various domains, including image and speech 
processing, clustering, and anomaly detection. This 
makes GMM invaluable for revealing hidden patterns 
within complex datasets. 

C. SGC Classification (SGDClassifier) 

The SGDClassifier, a linear classification algorithm 
utilizing Stochastic Gradient Descent (SGD) for 
optimization [9], was chosen for its efficiency with 
large-scale and sparse datasets. The algorithm 
iteratively updates model weights by processing one 
training sample at a time, making it computationally 
efficient for streaming data or large datasets. 

D. Linear SVC (LinearSVC) 

LinearSVC is a linear classification algorithm 
rooted in the Support Vector Machine (SVM) 
framework [10]. It classifies data into two or more 
classes using a linear decision boundary. The algorithm 
seeks to find a hyperplane that effectively separates 
classes in the feature space. The term "linear" denotes 
that the decision boundary is a linear combination of 
input features. Unlike SVC, LinearSVC employs a 
linear kernel by default, making it particularly suitable 
for datasets with linearly separable classes. 

III. CARTO SYSTEM 

The CARTO system, a pivotal 3-dimensional 
mapping system, has achieved widespread adoption 
globally, offering crucial insights into cardiac 
electrophysiology. Introduced by Biosense Webster 
(currently Johnson & Johnson) in 1996, CARTO has 
become an indispensable tool for guiding complex 
cardiac interventions. 



 

Figure 1.  Basic mechanism and typical setup of  

the CARTO system [6]. 

Figs. 1A. to 1C. illustrate the fundamental 
mechanism, patient movement monitoring, and typical 
setup of the CARTO system, providing a visual guide 
to its advanced features and applications in cardiac 
electrophysiology. 

A. CARTO System Mechanism 

The fundamental mechanism of the CARTO 
system relies on a triangular electromagnetic source, 
utilizing three distinct ultralow magnetic fields shown 
in Fig. 1A. This innovative design enables the 
continuous measurement of the catheter's distance 
relative to three magnetic generators positioned 
beneath the operating table. As a result, the system can 
precisely localize the catheter tip in three-dimensional 
space. This real-time spatial information is pivotal for 
navigating the intricate anatomy of the heart during 
procedures. 

B. Patient Movement Monitoring 

To ensure accuracy and account for any 
unintentional patient movements, an external reference 
patch is strategically placed on the patient's front and 
back as shown in Fig. 1B. This patch serves as a 
reference point for the system, allowing it to detect and 
compensate for potential shifts in the patient's position. 

C. Laboratory Setup 

The typical setup of the CARTO system in the 
electrophysiology laboratory is illustrated in Figure 1C. 
This configuration showcases the integration of 
advanced technology to provide clinicians with a 
comprehensive visualization of the cardiac anatomy 
during procedures. The seamless synergy between the 
electromagnetic source, catheter localization, and 
patient movement monitoring contributes to the 
system's effectiveness in guiding catheter ablation 
interventions. 

D. Catheter Ablation Targets 

Common ablation sites for cardiac arrhythmias, 
such as atrial fibrillation (AF), include the left 
pulmonary vein (LPV), right pulmonary vein (RPV), 
and Cavotricuspid isthmus (CTI). These specific 
targets are critical areas where abnormal electrical 
pathways may be addressed through ablation 
procedures. 

The primary aim of this research is to explore the 
feasibility of automated recognition of ablation sites 
within the CARTO system. This initiative seeks to 

demonstrate the potential for automated processes to 
succeed human intervention, ultimately alleviating the 
burden on medical staff. The integration of machine 
learning algorithms, as explored in this study, 
represents a step toward enhancing the efficiency and 
precision of ablation site identification during catheter-
based interventions. 

IV. DATASET OF ABLATION SITE IN CARTO 

SYSTEM 

In the dataset of a single case, the results of 
principal component analysis revealed a distinct 
separation of data labeled LPV, RPV, and CTI without 
any observed overlap, demonstrating the efficacy of the 
CARTO system in capturing intricate spatial patterns 
as shown in Fig. 2A. However, when examining the 
mixed dataset comprising 10 cases, a noteworthy 
observation emerged: the RPV data exhibited overlap 
with both LPV and CTI labels as shown in Fig. 2C. This 
phenomenon underscores the potential variability and 
complexity introduced when considering a broader set 
of patient data. 

The data is converted to 2-dimensional coordinates 
(X, Y, Z) using principal component analysis, 
showcasing the robustness of the methodology in 
elucidating spatial relationships. In the context of a 
single case, the labels for LPV, RPV, and CTI maintain 
distinct separation as shown in Fig. 2B. Contrarily, in 
the mixed dataset of 10 cases, it becomes evident that 
the RPV label shows overlap with both LPV and CTI 
labels, emphasizing the importance of considering 
diverse patient data as shown in Fig. 2D. 

 

 

Figure 2.  Visualizing 3-dimensional data extracted from the 

CARTO system for a single case [A] and its PCA dimension 

reduction [B]; comparing to the data of 10 cases [C] and its PCA 
dimension reduction [D]. 

Incorporating statistical data, a comprehensive 
dataset comprising 306,867 rows was created by 
integrating the data of 10 patients, as depicted in Fig. 3. 
This dataset represents a diverse range of cases, 
capturing nuances in ablation site characteristics across 
different patients. The large-scale dataset provides a 
robust foundation for the subsequent construction of a 
predictive model. 

 

Figure 3.  Data integration 



To model the intricate relationships within the 
dataset, a supervised learning approach was employed. 
This involved training a predictive model to accurately 
forecast LPV, RPV, and CTI label data from the X, Y, 
and Z coordinate axes. The utilization of machine 
learning techniques not only facilitates the prediction 
of ablation site labels but also enables the extraction of 
valuable insights into the spatial dynamics of the 
cardiac anatomy. 

Furthermore, the model construction process 
involved meticulous feature engineering to enhance the 
predictive capabilities. Features such as spatial 
relationships, proximity metrics, and temporal 
dynamics were considered to enrich the model's 
understanding of the underlying patterns within the 
ablation site dataset. 

This comprehensive approach, combining 
advanced visualization techniques, statistical analysis, 
and machine learning methodologies, contributes to a 
deeper understanding of the complexities inherent in 
characterizing ablation sites. The findings derived from 
this extensive exploration lay the groundwork for 
improved clinical insights and advancements in the 
field of catheter ablation procedures. 

V. RESULTS OF EXPERIMENT 

In assessing prediction accuracy, all classifiers in 
the single-case dataset demonstrated exceptional 
performance, achieving an accuracy of 1.0. However, 
when transitioning to the mixed dataset of 10 cases, 
distinct variations in performance metrics were 
observed among the classifiers. Cross-validation 
involved testing each case individually as the test data 
while using the remaining  9 cases as training data. This 
process was repeated for each patient data from Data 1 
to Data 10. The results are detailed as follows: k-NN 
(test score: 0.999, train score: 0.982, precision: 0.985, 
recall: 0.982, F-1 score: 0.983), GMM (test score: 
0.981, train score: 0.983, precision: 0.986, recall: 
0.983, F-1 score: 0.986), SGDClassifier (test score: 
0.897, train score: 0.940, precision: 0.940, recall: 
0.908, F-1 score: 0.907), and LinearSVC (test score: 
0.796, train score: 0.889, precision: 0.851, recall: 
0.796, F-1 score: 0.770), shown in Fig. 4. 

 

Figure 4.  A comprehensive comparison of prediction accuracy, 

precision, recall, F-1 score among the k-NN, GMM, 
SGDClassifier, and LinearSVC.  

Performance metrics were obtained through cross-
validation, with the reported numbers representing the 
respective average values for each prediction. The 
results highlight the robustness of k-NN, showcasing 
consistently high and stable test scores across the 
board. 

The exceptional accuracy achieved by all classifiers 
in the single-case dataset underscores the efficacy of 
the models in capturing and categorizing distinct 
ablation site patterns. However, when confronted with 
the increased complexity of the mixed dataset, subtle 
challenges in classification emerge, as evidenced by 
variations in performance metrics. 

The GMM demonstrates strong predictive 
capabilities, with high test and train scores, 
emphasizing its adaptability to diverse patterns within 
the mixed dataset. Similarly, the KNN exhibits 
remarkable stability with consistently high test scores, 
making it a reliable choice for accurate predictions 
across varied cases. 

In contrast, the SGDClassifier and LinearSVC, 
while still demonstrating respectable performance, 
show slightly diminished accuracy in the mixed 
dataset. These variations could be indicative of the 
challenges posed by overlapping RPV data observed in 
the principal component analysis results shown in Fig. 
2. 

The comprehensive comparison presented in Fig. 3 
serves as a valuable guide for selecting appropriate 
classifiers based on the dataset characteristics. It 
provides insights into the relative strengths of each 
model in handling complex spatial patterns within the 
CARTO system's ablation site data. These findings 
contribute to the optimization of machine learning 
models for enhanced accuracy in predicting ablation 
site labels, thus advancing the application of such 
technologies in clinical settings. 



VI. CONCLUSION 

The results have indicated that nonlinear models 
consistently achieve high accuracy. Nonlinear models 
demonstrate notable adaptability to data, proving 
especially advantageous for discerning overlapping 
regions, as evidenced in this validation where their 
adaptability to overlapping sites with RPV was 
particularly beneficial. However, it is anticipated that 
with an increase in the number of mixed cases, the 
overlap area will also expand, indicating the need for 
new data to identify areas of overlap. In future 
endeavors to improve the accuracy of distinguishing 
overlapping sites, we plan to normalize the data, 
establish reference points, and implement further 
enhancements. 
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