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Abstract
Objective: Mortality risk prediction (MRP) enhances healthcare resource allocations and end-of-life care. High predic-
tion accuracy has been reported for MRP in intensive care units (ICUs). However, there have been fewer studies on the
use of MRP in care facilities, which lack laboratory test data and continuous vital signs monitoring. Among related studies,
vital signs-based therapy (VSbT), common in hospitals and care facilities, can dramatically affect vital signs, but VSbT effect
has not been considered in related studies. This lack of consideration might cause lower prediction accuracy.
Methods: The purpose of this study was to explore the feasibility of using MRP in care facilities, but with sparse vital
signs measurements from nurseChart, part of an open ICU database. To make clear the effect of VSbT on MRP, the
authors proposed a feature-exploring algorithm for identifying the VSbT-related features and thereby identify a classifier
for vital signs-based MRP. Moreover, appropriate vital signs measurement intervals were investigated using the data of
continuous vital signs contained in the database as reference.
Results: This study shows that of all the vital signs, temperature is strongly subject to VSbT effects. Moreover, with
sparse vital signs data and certain personal information, the classifier with the proposed VSbT-related features could
outperform those reported so far (G-mean: 0.6462 vs. 0.6307). Moreover, for each vital sign, the appropriate measure-
ment interval was determined for care facility scenarios.
Conclusion: Using sparse data from an open ICU database, this study shows the feasibility of vital sign-based MRP use at
care facilities, which is a big step towards the practical use of the MRP in those facilities.
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Introduction
The aging population is rapidly growing around the world.1

With end-of-life care, a high staff-to-patient ratio is neces-
sary for intensive patient monitoring. Therefore, mortality
risk prediction (MRP), which enables early notification to
the patient’s family members,2 can help allocate resources,
improve palliative care decisions, provide dignity during
end-of-life care,3 and advocate improved end-of-life
decision-making.4,5

Several studies have explored models for predicting mor-
tality risk for patients in intensive care units (ICUs).6–25

These studies employed models that included laboratory
results, demographics (age, gender), and vital signs.8,20

However, laboratory results are very time-consuming, and
they are difficult to obtain in non-ICU settings such as

care facilities. Consequently, some studies have used only
a small number of laboratory results. For example, Aya
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Awad et al. developed a model for early prediction, at 6
hours after ICU admission, by using vital signs and two
laboratory result variables.9 For care facility cases, many
studies only focused on mortality-related factors,26–29 but
few studies have used data-driven methods to predict mor-
tality with associated factors and scores.30 For example,
Chendra et al. used demographics, medical comorbidity,
and laboratory values to predict mortality within 6 months
of hospital discharge and transfer to facility care.30 Some
limited consideration has been given to vital signs in care
facility settings. For example, Bonnez et al. studied correl-
ation levels between vital signs and mortality using statis-
tical techniques,31 but this type of analysis merely
identifies correlation. It does not predict mortality.

One important issue to note is that all existing MRP stud-
ies failed to take into consideration the vital signs-based
therapy (VSbT) effect. VSbT refers to clinical interventions
that are initiated in response to abnormal vital signs mea-
surements according to established clinical guidelines.
Compared to ICUs, care facilities exhibited greater variabil-
ity in both VSbT implementation and treatment outcomes,
often with less aggressive interventions and a higher likeli-
hood of incomplete treatments. While VSbT guidelines in
both settings share fundamental vital sign thresholds that
trigger clinical concern, they differ significantly in interven-
tion intensity and monitoring frequency. Vital signs
respond to different excitations (e.g. sepsis and medica-
tion)32 and cause changes to each other.33–35 The treatment
of fever can cause a dramatic change in temperature and
other vital signs, as elevated temperature is linked to
increased heart rate and decreased blood pressure and oxy-
gen saturation.34 The antipyretic treatments primarily
extended the length of the fever rather than reducing its
intensity.35 Increased mortality rates associated with anti-
pyretic drugs could be due to their toxic effects or their
interference with the body’s natural fever response, which
is typically protective against infection.35 As another
example, the role of oxygen therapy in intensive care man-
agement varies depending on different SpO2 levels and
accompanying conditions.36

Therefore, it is reasonable to claim that changes in vital
signs following VSbT might be different from the vital
signs before the VSbT,37,38 indicating that multiple dynam-
ics might be hidden in one vital signs data sequence. When
using vital signs to predict mortality, if the effects of VSbT
are neglected, then one single prediction mechanism must
deal with multiple dynamics. A complex prediction mech-
anism would be required, and it possibly could result in
lower MRP accuracy. Except for the prediction of the onset
of intervention,37,39 the VSbT effect has not been made
clear in the literature.

The therapies are not only important for ICUs. They are
also important for end-of-life management in nursing
homes, which urgently require MRP.40 In nursing homes
for example, the frequency and pattern of vital signs

abnormalities have been associated with hospitalization
and mortality,31 suggesting that appropriate VSbT in these
settings could significantly impact outcomes for residents
requiring end-of-life care.

It is important to note that while VSbT guidelines used in
care facilities and ICUs share similar fundamental vital sign
thresholds, the guidelines differ significantly in implemen-
tation. Care facilities typically employ a subset of the inter-
ventions available at ICUs, with less intensive monitoring
and more limited treatment options. As an example, both
settings recognize similar fever thresholds (approximately
37.8–38.0 °C),34,35,41,42 but ICUs can implement more
aggressive fever management protocols.34,35 Trilling et al.
reported that hypertension in nursing homes is defined
using similar thresholds (≥140/90 mmHg)43–45 to those
used in ICUs settings. Despite the differences in criteria,
the underlying physiological responses to interventions
and their relationship to mortality risk likely follow similar
patterns. Therefore, the ICU-based analysis in this study is
relevant to care facility settings, with appropriate adjust-
ments for the more limited intervention capabilities.

Abnormal vital signs are strongly related to life-
threatening adverse events,46 various criteria have been
reported for determining abnormal vital signs.43,44,46,47

However, the vital signs criteria for triggering VSbT are
either not clear or are mixed.32 Although the effects of
VSbT were investigated by comparing adverse effects of
treatment groups and control groups,35 there haven’t been
any studies reporting VSbT’s effects on MRP.

The purpose of this study was to explore the feasibility of
MRP in care facilities, but using an open ICU database
(eICU-CRD: eICU Collaborative Research Database48),
addressing two challenges: limited data availability due to
the scarcity of nursing home records, requiring emulation
using open ICU database, and the need to account for
VSbT effects. This exploration is necessary because feasi-
bility studies are required before any trials can be carried
out in care facilities.

This study first made clear the effects of different types
of therapies on MRP by splitting the dataset into subgroups
with the vital sign dependent thresholds following the cri-
teria for abnormal vital signs. In our study, VSbT specific-
ally refers to evidence-based clinical interventions triggered
by abnormal vital sign values according to the vital signs
criteria for triggering guidelines. A feature-exploring algo-
rithm was proposed for capturing information for signifi-
cant VSbT effects and for MRP. If the overall accuracy of
MRP for the split subgroups is much higher than that of
the original single dataset, it can be inferred that the
VSbT effects should be taken into consideration. It can
also be inferred that the splitting of the dataset at therapy
instance (the threshold of the vital sign) is one way to
improve mortality prediction. This study adheres to the
TRIPOD (transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis)
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guidelines,49 with the completed checklist available
(Supplemental Appendix S1).

Materials and methods

Database and data selection
The eICU-CRD48 database used in this study contains
records for over 160,000 patients who were admitted to
ICUs. This study focuses on older patients admitted to
ICUs, thus one criterion used to select the dataset was the
patient’s age≥ 60 years old, without any restrictions on
causes of admission to an ICU. This focused selection of
elderly patients helps bridge the demographic gap between
ICU and care facility populations, as older adults represent
the primary demographic in long-term care settings. To
emulate limited vital signs data typical of care facilities,
this study used the sparse vital signs measurement from
the “NurseChart” table in eICU-CRD. To obtain 3-day,
4-day, 5-day, and 7-day death predictions, only patients
who remained in an ICU for at least 8 days were selected.
To avoid re-admission data mixture, if a patient’s final
ICU admission ended with death, then all previous ICU
admission records were excluded from the dataset.
However, in cases where a patient survived and was
released from ICU care, each ICU admission record for
the same patient was considered to be independent.

Vital signs data were obtained from the “nurseChart” table,
which contains data recorded by nursing staff. The vital signs
of interest in this study are temperature, heart rate (HR), respir-
ation rate (RR), oxygen saturation (SpO2), systolic blood pres-
sure (SBP), and diastolic blood pressure (DBP). Rather than
the continuous, dense, and comparatively accurate monitoring
data of “vitalperiodic” table, the vital signs in the “nurseChart”
table is sparse and inaccurate, which emulates the situation in
care facilities. To handle human errors contained in the
“nurseChart” table, any value outside the range µ± 5σ, where
µ is mean and σ is standard deviation (SD) of the normal dis-
tribution fit from the data throughout the recording period, was
assumed to be an outlier and excluded from the study. For
SpO2, values over 100 were excluded following the highest
scale of SpO2. Because some records in the “nurseChart” table
are unevenly measured and sparse, which makes time series
analysis difficult, the following criteria were used to select
samples that contained enough records for processing:

• For the five vital signs used in this study (HR, RR,
SpO2, SBP, and DBP), samples must have at least
eight records per day.

• For temperature, samples must have at least three
records per day.

In the database, records for temperature were less fre-
quent than records for the other vital signs. Therefore, the

minimum number of records for temperature was set to
only three per day.

As a result of the selection process, the total dataset for
further study included samples for 2277 patients where
1981 survived and 296 died at discharge. The mean patient
age was 71.90± 8.02 years, with a gender distribution of
54.90% male (n= 1250) and 45.10% female (n= 1027).
For patients that died at discharge, 167 were male and
129 were female. For patients that survived, 1083 were
male and 898 were female. The mean duration of stay in
an ICU was 14.9± 9.1 days, with patients who died having
a longer average stay (16.9± 17.2 days) compared to those
that survived (14.6± 7.0 days). The larger SD in the
deceased group’s ICU stay is due to the smaller number
of samples and larger variability in length of stay. The
most frequent reasons for ICU admission, based on
Apache admission diagnosis categories, were: respiratory
disorders, cardiovascular disorders, sepsis, pulmonary con-
ditions, and pneumonia.

Splitting threshold options
Figure 1 shows the distribution of vital signs (oxygen satur-
ation, heart rate, respiratory rate, DBP, SBP, and tempera-
ture) across various temperature thresholds (34.0–40.0 °C,
horizontal axis). The plots represent four color-coded
patient groups denoted by blue, red, yellow, and green.
These colors correspond to the distributions of high-
temperature subgroup alive, high-temperature subgroup
death, low-temperature subgroup alive, and low-
temperature subgroup death, respectively. By splitting the
dataset into high- and low-temperature subgroups, the dif-
ference between the signal distribution of the death and sur-
vival groups becomes clearer for several vital signs at
certain temperature values, for example temperature at
38.0 °C. Each plot visualizes the variation in probability
density across the range of possible measurements. This
change indicates that there might be potential to enhance
the MRP by implementing data splitting to take VSbT
effects into consideration. Sample size distribution analysis
across temperature thresholds is tabulated in Supplemental
Appendix S3, Table S1.

Regarding reasonable threshold values for each vital
sign, various VSbT treatment criteria43,44,46,47,50 can be
referenced in the literature, although no systematic investi-
gation has been done. To identify an option list of threshold
values for each vital sign, the following criteria were
reviewed and analyzed.

• Normal ranges for vital signs from Sapra et al.46

• The criteria for vital signs for triage from Barfod
et al.47

• Hypertension guidelines from Burnier43 and Magee
and von Dadelszen44
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• Systemic inflammatory response syndrome (SIRS)
criteria50 as follows:
• HR> 90 beats/minute
• Temperature > 38 °C or <36 °C
• RR> 20 breaths/minute

Splitting threshold options for heart rate. For heart rate, the
normal range of vital signs definition, the criteria for vital signs
for triage, and SIRS were analyzed. Tachyarrhythmia and

bradycardia are defined as HR>100 beats/minute51 and HR
<60 beats/minute,52 respectively. They are boundary values
for the normal range of heart rate. However, for bradycardia,

noticeable symptoms typically begin around an HR of 50

beats/minute. Symptoms such as fatigue, weakness, and dizzi-

ness were judged at the lower rate.52 The achievement of atrial

fibrillation control is associated with a heart rate after treatment

of ≤110 beats/minute.53 HR<50 beats/minute and an HR>

110 beats/minute mark the beginning of triage in criteria for

Figure 1. The distribution of each vital sign for 3-day predictions, split with different thresholds of temperature: (A) temperature,
(B) oxygen saturation, (C) systolic blood pressure, (D) diastolic blood pressure, (E) respiratory rate, and (F) heart rate.
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vital signs for triage. HR>130 beats/minute is the resuscita-
tion level. HR>90 beats/minute is associated with SIRS cri-
teria. Moreover, spending 10% more time with a heart rate
below 90 beats/minute was associated with increased survival,
while spending 10% more time with a heart rate > 120 beats/
minute resulted in decreased survival.54 Therefore, HR of
<50, <60, >90, >100, >110, >120, and >130 were used for
comparison as shown in Table 1.

Splitting threshold options for SpO2. SpO2 less than 95% is
considered abnormal.55 Zhou et al.56 found that the time
spent in an oxygen saturation of 95% to 99% was associated
with reduced mortality in ICUs with interventions such as
mechanical ventilation. SpO2 less than 90% is defined as
hypoxia57 and can lead to a clinical deterioration.52,53 The
best threshold to start oxygen therapy in acute stroke or acute
myocardial infarction patients might be 90%.58 Moreover,
the brain gets effect when SpO2 is less than 80%.55

Therefore, three SpO2 thresholds were evaluated following
the vital signs criteria for triage: <95%, <90%, and <80%.

Splitting threshold options for respiration rate. For respiration
rate, RR>20 breaths/minute is one of the indicators of SIRS
criteria. RR<12 breaths/minute and RR>20 breaths/minute
are boundary values for the normal range of RR.46 RR>
25 breaths/minute and RR<8 breaths/minute generally indi-
cate clinical deterioration.59 RR>35 breaths/minute is one of
the criteria for acute respiratory failure.60 The criteria for vital
signs for triage are defined for different levels of resuscitation
as <8, >25, >30, and >35. Therefore, the threshold options of
RR were determined as follows: <8, <12, >20, >25, >30,
and >35 for RR.

Splitting threshold options for diastolic and systolic blood
pressure. Hypertension guidelines define different states
of hypertension. Therefore, the following criteria for both

triage and hypertension guidelines were adopted to decide
the threshold options for blood pressure:

• >85, >90, >100, and >110 for DBP
• <80, <90, >130, >140, >160, >180 for SBP

Splitting threshold options for temperature. For temperature, the
criteria for vital signs for triage, SIRS criteria, and the normal
range of vital signs definition were used. However, different
fever manifestations are associated with different physio-
logical responses.35 From the literature, peak temperatures
≥39,≥39.3, and≥39.5 were associated with increased mortal-
ity,35 and fever was defined as ≥38.3.34 Therefore, to cover all
VSbT events, the following threshold options for temperature
were used: ≤32, ≤34, ≤35, ≤36.5, ≥37.5, ≥38, ≥38.3, ≥39,
≥39.3, ≥39.5, and ≥40.

Intervention effect evaluation through mortality
prediction splitting threshold options
A method was designed to explore splitting thresholds for
vital signs while investigating the performance of mortality
predictions. Figure 2 shows the three steps of the method
used in this study. In the first step, for each vital sign, the
values in the option list acquired through the analysis in
the splitting threshold options sectionwere set as the thresh-
olds. Detailed pseudocode for the complete pipeline is pro-
vided in Supplemental Appendix S2. Then, they were
evaluated one by one. For one vital sign, the dataset was
split into subgroups by threshold. After separating the data-
set, features (detailed in the feature exploration section)
were extracted from the data for all the vital signs and
demographic information for each subgroup. Classifiers
were constructed for each subgroup to get an MRP rate.
For example, with a temperature threshold of 38.0°C, the

Table 1. Vital sign thresholds used for dataset splitting in this study.

Vital sign Thresholds evaluated Clinical criteria References

Temperature (°C) ≤32, ≤34, ≤35, ≤36.5, ≥37.5, ≥38, ≥38.3,
≥39, ≥39.3, ≥39.5, ≥40

SIRS criteria, fever definitions, hypothermia,
Normal range, triage criteria

34,35,46,47

Heart rate (bpm) <50, <60, >90, >100, >110, >120, >130 Normal range, SIRS, tachycardia/bradycardia,
triage criteria

46,47,51–54

SpO⍰ (%) <80, <90, <95 Hypoxia definitions, triage criteria 47,55–58

Respiratory rate
(bpm)

<8, <12, >20, >25, >30, >35 Normal range, SIRS, respiratory failure, triage
criteria

46,47,59,60

SBP (mmHg) <80, <90, >130, >140, >160, >180 Triage criteria, Hypertension grades 43,44,47

DBP (mmHg) >85, >90, >100, >110 Hypertension grades 43,44
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2277 samples contained in the dataset were separated into
two groups: the high-temperature subgroup, containing
788 samples with temperatures above 38°C, and the low-
temperature subgroup, containing the remaining 1489
samples.

The classification results of the two subgroups were
averaged and then compared with the non-split approach.
To determine the best threshold for the vital sign, the predic-
tion rates of all the values in the option list were compared. If
the prediction rate of each vital sign from the split approach

Figure 2. The flow of MRP used to investigate splitting thresholds. Step 1: Evaluation of the thresholds for each vital sign following an
option list. Step 2: Comparison of the performance between the split and non-split datasets. And step 3: Integration of the results from
multiple classifiers.
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outperformed that of the non-split approach, then the output of
the split approach was used as input to the next step.

All the classifiers for each vital sign were established,
for both the non-split case and the split case using the best
threshold. In the last step, a classifier was built to inte-
grate the classification results of the previous steps. For
each sample, the outputs of the classifiers corresponding
to each vital sign were concatenated as the input to the
classifier. For example, the outputs of step one were
labeled 1 or 0, where 1 indicates death and 0 indicates
survival. If the split approach of five vital signs outper-
formed the non-split approach, then the five outputs
from step one were fed into the next classifier to deter-
mine the final results.

However, to consider the effect of subgroups, the sub-
groups generated by the split approach were combined
into a single binary variable, where 1 indicates membership
in the high subgroup and 0 indicates membership in the low
subgroup. As a result, the final step (step three) received
double features as input. For example, if the split approach
of five vital signs was outperformed, then the five additional
features indicated whether each vital sign belonged to the
high subgroup or low subgroup.

Feature exploration
One previous research study39 recommends using a 12- to
96-hour window to focus on changes in vital signs, while
excluding baseline illnesses or chronic conditions, to
achieve a more accurate assessment of patient conditions.
Similarly, an 84-hour window was used in another study24

to extract features for MRP, which was shown to be the
most efficient and informative period for classification based
on the results of several trial tests. This study focused on mak-
ing “day ahead” predictions. Therefore, a 3-day window was
used to calculate features and predict mortality. For example,
to make a 3-day ahead prediction, the recordings from day 3rd

to day 6th before the patient’s discharge are contained in the
window, as illustrated in Figure 3. However, for a 7-day ahead
prediction, a 1-day window is used since the maximum length
of stay in the ICU is 8 days.

Age information, statistical features, selected feature
combinations, and episode information for vital signs
were considered. The statistical features were expected to
capture fundamental characteristics of the vital signs.
Pairs of complementary single statistical features may pro-
vide sufficient information without using the entire set of
statistical features. Moreover, since the statistical features
could not reflect incidence frequency of special events for
vital signs, which are important for mortality predic-
tion,37,38 episode information was also investigated.

Statistical features. The statistical features mean, median,
standard deviation (SD), maximum (max), and minimum
(min) were extracted from the raw vital signs measurements

contained in n-day windows as described above. Mean and
median can provide the average of the vital signs. The stand-
ard deviation, maximum, and minimum show the spread and
extreme change of the data. For each of the six vital signs,
five statistical features were extracted.

Pairs of single statistical features. This new work specifically
focuses on temperature measurements not only due to their
potential for high performance predictions, but also because
temperature is a critical indicator of SIRS, a condition asso-
ciated with increased mortality.

As an example, the feature pair selection for 3-day pre-
dictions was used in the high-temperature subgroup. First,
an ANOVA F-test was used to rank all the statistical fea-
tures. Then, min diastolic was identified as the top-ranked
feature, leading to a G-mean of 61.41%. Combining the
min diastolic with mean diastolic (the second-ranked fea-
ture) resulted in a reduced G-mean of 58.27%. On the other
hand, combining the min diastolic with min systolic (the
third-ranked feature) yielded a G-mean of 61.27%.
Likewise, the min diastolic (the first-ranked feature) com-
bined with max temperature (the fifth-ranked feature)
improved the G-mean to 65.50%, and min diastolic com-
bined with the median respiratory rate (the ninth-ranked
feature) achieved a G-mean of 63.74%. As a result, the
combination of min diastolic with max temperature was
identified as the top-performing pair.

Temperature event features. For all vital signs, body tem-
perature was affected by various factors such as infection,
age, and medication.32 Moreover, long-term continuous
measurements of body temperature are easier to obtain,
even in care facility settings. Both the magnitude and the
duration of fever are associated with mortality in ICU
patients.35 In this study, the number of fever episodes35

were used as the temperature event feature. A fever episode
is determined by the onset of fever (≥100.4 F or 38.0 °C)
which continues until the temperature returns to within
the normal range (≤ 99.5 F or 37.5 °C). The number of sam-
ples in the high-temperature subgroup (defined as ≥38.0 °C)
is shown in Supplemental Appendix S3, Table S2.

In the high-temperature subgroup (≥38.0 °C), combining
the Statistical features and the Temperature Event features
with age information resulted in decreased performance.
This decline may be due to the inclusion of ambiguous fea-
tures. Given the strong performance of the combination of
min diastolic with max temperature, min diastolic was
included as an additional input feature for the high-
temperature subgroup. For 3-day ahead predictions, the feature
with the highest F-values score, using the ANOVA F-test, in
the high-temperature subgroup wasmin diastolic. For the total
dataset and for the low-temperature subgroup, the feature with
the highest F-values scores was mean diastolic. The highest
F-values score for both temperature subgroups are shown in
Table 7.
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Classification models and evaluation
Support vector machines (SVM) are well-regarded classi-
fiers known for their high performance, relying on opti-
mal margins to divide datasets into two classes using
a hyperplane. Uday et al. conducted a study on time
series classification, employing machine learning on the
UCI_HAR_Dataset with experts generated features.
Their findings revealed that the linear SVM yielded the
highest accuracy.61 Consequently, linear SVM is used
for the first step in this study as depicted in Figure 2.
The output from step 1, which is binary and represented
by either 0 or 1, was fed as an input for the classifier in
step 3. In the final step (step 3), the evaluation was con-
ducted using the following models: SVM with both linear
and RBF kernels, decision trees (DT), random forests
(RF), naive Bayes (NB), and logistic regression (LR).

In the dataset used for this study, the number of patients
who died (the minority class) is much smaller than the num-
ber of patients who survived (the majority class). As a
result, the classification of the dataset is an imbalance clas-
sification problem. To ensure that the model did not overfit
to the majority class, a class weight was applied to the SVM
model using the equation below62:

Wj = n sample / n classes × n samplej (1)

where Wj is the weight for each class jth, n_sample is the
total number of samples in the dataset, n_classes is the total
number of classes in the dataset, and n_samplej is total num-
ber of samples in class jth. The purpose of class weighting is
to penalize the misclassification of the minority class by set-
ting a higher weight to its error and reducing the weight for
the majority class.63

All analyses were conducted using Python 3.11.4 with
scikit-learn 1.3.0 for machine learning implementations.
For the model implementations, scikit-learn was used
with the following configurations:

• Linear kernel SVM: C= 1.0, kernel=’linear’, class_
weight=’balanced’

• RBF kernel SVM: C= 1.0, kernel=’rbf’, class_
weight=’balanced’

• Logistic regression: random_state= 0, class_
weight=’balanced’

• Decision tree: random_state= 0, class_
weight=’balanced’

• Random forest: random_state= 0, class_
weight=’balanced’

• Gaussian Naive Bayes: priors=None, var_smooth-
ing= 1e-09.

To address class imbalance, balanced class weights as
described in equation (1) were applied to all classifiers
except NB. Unlike the other models, NB does not support
class weighting natively because it operates on probability
distributions rather than optimizing a decision boundary.
Instead, NB inherently adjusts for class imbalances through
Bayes’ theorem, which incorporates prior probabilities
derived from the training data.

A leave-one-out cross validation was used to evaluate
the models. The classification results were used to generate
a confusion matrix, which shows true positives (TP), true
negatives (TN), false positives (FP), and false negatives
(FN). Deceased patients are classified as positive, and sur-
vivors as negative. Due to the highly imbalanced nature
of the dataset, accuracy is not a reliable performance metric,
as a classifier achieves high accuracy by learning to predict
the majority class while completely ignoring the minority
class. The F1 score, which indicates the ratio of precision
and recall only considers the performance for the positive
class, whereas in MRP, balanced performance across both
classes (survivors and non-survivors) should also be taken
into account. Therefore, this study used G-means for asses-
sing classifier performance,64,65 which reflects the compro-
mised but balanced performance between two classes.

The geometric mean (G-mean) is defined as:

G-mean =
�������������������������
sensitivity × specifivity

√
(2)

where:

Figure 3. Data used for “day ahead” predictions.
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• Sensitivity (Recall)=TP / (TP+ FN),64,65 which
measures the model’s ability to correctly identify
the death class.

• Specificity=TN / (TN+FP),64,65 which measures the
model’s ability to correctly identify the survival class.

This metric accounted for both classes, ensuring that the
model performed well in detecting mortality risk without
being biased toward the majority class.

Evaluation of the least number of vital sign records
per day in terms of MRP
The data from the nurseChart table in the eICU-CRD database
is unevenly measured and sparse, similar to what is highly
likely to occur in care facilities. Therefore, it is meaningful to
investigate the least number of vital sign records per day neces-
sary for MRP to be used in care facilities while taking into con-
sideration the limited workforce of such facilities. The three
critical vital signs, temperature, heart rate (HR), and SBP,
were chosen for evaluation due to their fluctuating nature.66

While both HR and SBP exhibited fluctuations, temperature
showed a gradual trend. as illustrated in Figure 4. To determine
the least number of vital sign records per day for each vital
sign, we first interpolated temperature, HR, and SBP data to
a consistent 1-minute interval. Subsequently, based on the
least frequent measures observed in the “nurseChart” table,
evaluations were conducted at intervals of 1, 15, 30, 45, 60,
and 120 minutes for HR and SBP, at intervals of 1, 15, 30,
45, 60, 120, 180, 240, and 480 minutes for temperature.
Linear interpolation was used for this process, as it provided
sufficient accuracy while minimizing potential artifacts that
might be introduced by more complex interpolation methods.

Results

Evaluation of thresholds for split approach following
VSbT effects
As described in the splitting threshold options section above,
various thresholds were evaluated for each vital sign. The
results of the split approach for 3-day ahead predictions are
shown in Table 2 (Supplemental Appendix S3, Figure S1).
The highest performance thresholds in each vital sign for
3-day ahead predictions were ≥38.0 °C for temperature,
< 95% for SpO2, >130 mmHg for SBP, >110 mmHg for
DBP, >90 beats/minute for HR, and >20 breaths/minute
for RR. However, the performance of the split approach for
SpO2<95% did not outperform the non-split approach.
Therefore, results from the split approach for SpO2 were not
included as input for the final step.

The maximum performance of each vital sign threshold
evaluation for 3-day, 4-day, 5-day, and 7-day ahead predic-
tions are tabulated in Tables 2, 3, 4, and 5, respectively. The

highest performance of each vital sign in the various day
ahead predictions are different.

In step 2, the outputs of the outperforming approach were
combined to form an input to step 3. Consequently, all vital
signs except SpO2 were selected for predicting 3-day and
5-day ahead predictions. Meanwhile, for 4-day and 7-day
ahead predictions, all vital signs in the split approach demon-
strated superior performance. Consequently, all vital signs
were selected.

Comparison between non-split and split approaches
using statistical features
Table 6 (Supplemental Appendix S3, Figure S2) shows the
G-mean differences between the non-split approach and the
split approach for different day ahead predictions. As can be
observed from the table, the 3-day ahead predictions
achieved the highest G-mean, followed by 4-day, 5-day,
and 7-day ahead predictions. This table also clearly demon-
strates that the split approach had the higher G-mean com-
pared with the non-split approach.

Table 6 displays the performance of the non-split and split
approaches for different day ahead predictions. The results indi-
cate that the split approach consistently achieved higher
F1-scores, G-means, and accuracies compared to the non-split
approach. Furthermore, the 3-day ahead predictions consist-
ently yielded the best performance across all day ahead predic-
tions. These trends are further supported by the results in
Supplemental Appendix S3, Table S3, which show improved
G-mean and AUC values for the split approach, particularly
for the 3-day and 5-day predictions, under both LOOCV and
5-fold cross-validation. The ROC curves for these comparisons
are illustrated in Supplemental Appendix S3, Figures S3–S12.

To confirm whether the improvements observed with the
split approach were statistically significant, we performed a
McNemar test comparing paired prediction outcomes (correct
vs. incorrect) between the split and non-split models for each pre-
diction window. In this test, a p-value less than 0.05 is considered
indicative of a statistically significant difference. The results
showed that the performance improvement for the 3-day and
4-day prediction was statistically significant. Additional details
are provided in Supplemental Appendix 3, Table S4. These find-
ings support the robustness of the proposed approach.

Results for temperature event features
The highest F-values score features of the ANOVA F-test
in the high-temperature and low-temperature subgroups
for different day ahead predictions are tabulated in Table 7.
The feature with the highest F-values score in the higher tem-
perature subgroup was min diastolic while that of the total
dataset and the lower temperature subgroup was mean
diastolic.

Based on these findings, several feature combinations were
evaluated for the high-temperature subgroup. For 3-day ahead
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Figure 4. Signals in different time intervals where cross symbols are original data and dot symbols are interpolated data for
(A) temperature, (B) heart rate, and (C) systolic blood pressure. The x-axis represents time relative to ICU discharge, with negative
values indicating minutes prior to discharge (e.g. −3000 means 3000 minutes before discharge).
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predictions, the following feature combinations were evaluated:
Statistical+ age (G-mean: 65.11%), Temperature Event+
max temp+ age (G-mean: 60.64%), Statistical+Temperature
Event+ age (G-mean: 63.75%), and Temperature Event
+max temp+min diastolic+ age (G-mean: 66.40%).
The Temperature Event+max temp+min diastolic+ age
achieved the highest G-mean at 66.40%, with 79 TP,
435 TN, 37 FN, and 237 FP. Although TN in this

combination decreased compared with using only statis-
tical features, the TP increased substantially from 68 to
79, which contributed to improved overall performance.

From Figure 5, the Statistical+ age features for the low-
temperature subgroup and Temperature Event+max temp
+ highest F-values score feature+ age for the high-
temperature subgroup had the highest G-means for 3-day,
5-day, and 7-day ahead predictions. For the 4-day ahead

Table 2. The maximum performance of each vital sign in the
threshold evaluation results for 3-day ahead predictions.

Dataset TP TN FN FP
G-mean
(%)

Non-split 185 1261 111 720 63.07

Split with temperature
≥ 38.0 °C

186 1294 110 687 64.07

Split with SpO2 < 95% 172 1274 124 707 61.13

Split with SBP > 130
mmHg

186 1276 110 705 63.62

Split with DBP> 110
mmHg

185 1285 111 696 63.67

Split with HR> 90
beats/minute

185 1289 111 692 63.77

Split with RR> 20
breaths/minute

185 1281 111 700 63.57

Table 3. The maximum performance of each vital sign in the
threshold evaluation results for 4-day ahead predictions.

Dataset TP TN FN FP
G-mean
(%)

Non-split 180 1203 116 778 60.77

Split with temperature
≤ 35 °C

187 1246 110 735 62.93

Split with SpO2 < 95% 177 1225 119 756 60.81

Split with SBP > 160
mmHg

178 1237 118 744 61.28

Split with DBP> 90
mmHg

184 1252 112 729 62.68

Split with HR< 60
beats/minute

179 1248 117 733 61.72

Split with RR< 12
breaths/minute

183 1231 113 750 61.98

Table 4. The maximum performance of each vital sign in the
threshold evaluation results for 5-day ahead predictions.

Dataset TP TN FN FP
G-mean
(%)

Non-split 172 1265 124 716 60.91

Split with temperature
≥ 40.0 °C

173 1274 123 707 61.31

Split with SpO2 < 95% 172 1259 124 722 60.77

Split with SBP < 90
mmHg

177 1275 119 706 62.04

Split with DBP >110
mmHg

185 1265 111 716 63.17

Split with HR> 90
beats/minute

177 1272 119 709 61.96

Split with RR> 20
breaths/minute

174 1265 122 716 61.27

Table 5. The maximum performance of each vital sign in the
threshold evaluation results for 7-day ahead predictions.

Dataset TP TN FN FP
G-mean
(%)

Non-split 156 1194 140 787 56.36

Split with temperature
≤ 36.5 °C

161 1212 135 769 57.69

Split with SpO2 < 80% 155 1228 141 753 56.97

Split with SBP < 90
mmHg

166 1160 130 821 57.31

Split with DBP> 110
mmHg

164 1205 132 776 58.05

Split with HR> 100
beats/minute

174 1190 122 791 59.42

Split with RR> 30
breaths/minute

161 1205 135 776 57.52

Viriyavit et al. 11



predictions, the Statistical+ age features for the high-
temperature subgroup and Temperature Event+max temp
+ highest F-values score feature+ age for the low-
temperature subgroup had the highest G-means.

Figure 6 shows the performance of two feature groups
(“with temperature event” and “without temperature event”)
for different day ahead predictions. The temperature event
improved the prediction performance of the model for
3-day and 4-day ahead predictions.

Results for combined features
Table 8 provides a comparison of classification results
across various classification models and feature combina-
tions for 3-day ahead predictions. All classification metrics
were calculated using a decision threshold of 0.5 for con-
verting predicted probabilities to binary classifications.
The features included vital signs alone and a combination of
vital signs and high/low subgroup indicator features. For
example, the output from a non-split approach from a specific
vital sign is combined with high/low subgroup indicator

features, where a “1” was assigned for the high subgroup
and a “0” was assigned for the low subgroup. DT, RF, and
SVMs showed a slight decline in G-mean performance
when high/low subgroup indicator features were added.
However, NB and LR demonstrated improved G-mean per-
formance with the combined features. Notably, while NB
achieved the highest accuracy of 75.41% using only vital
signs, LR achieved the highest G-mean at 64.83% using com-
bined features.

Comparisons with related studies
To make a fair comparison with related studies, the same data-
set was used to evaluate the performance of other studies.
Baker et al.23 and Amer et al.24 adopted only vital signs for
MRP. While compared with the laboratory results, vital signs
are an easy measurement, and capable of reflecting real-time
health conditions used to detect clinical deterioration. Both stud-
ies focused on using vital signs to predict mortality. Baker
et al.23 developed a hybrid CNN-BiLSTM network to predict
mortality within 3, 7, and 14 days using vital signs and personal
information. Their data, sourced from the MIMIC-III database,
had inconsistent measurement frequencies that varied during
patient stays, but records were averaged every hour. In contrast,
the data used in this study, recorded at approximately 4-hour
intervals, reflects the measurement schedule typically seen in
care facilities. Amer et al.24 focused on 1.5-daymortality predic-
tions using extracted features from vital signs, with data
recorded continuously and averaged over 1- to 2-hour intervals.
However, neither study took into consideration the VSbT effect,
which this new work demonstrates to be important.

Table 9 shows the performance metrics of three different
methods on 3-day ahead predictions. The metrics used to com-
pare these methods are F1-scores, G-mean, accuracy, and

Table 6. Comparison of classification results from the final step with statistical features between the non-split and split approaches for
different day predictions.

Day ahead
prediction Approach TP TN FN FP

F1-Score
(%)

G-mean
(%)

Accuracy
(%) χ² p-Value Significant

3 Non-Split 185 1261 111 720 30.81 63.07 63.50 5.556 0.0184 Yes

Split 186 1294 110 687 31.82 64.07 65.00

4 Non-Split 180 1203 116 778 28.71 60.77 60.07 5.532 0.0187 Yes

Split 187 1246 109 735 33.73 63.04 62.93

5 Non-Split 172 1265 124 716 29.05 60.91 63.11 0.696 0.4042 No

Split 185 1265 111 716 30.91 63.17 63.68

7 Non-Split 156 1194 140 787 25.18 56.36 59.29 0.283 0.5948 No

Split 174 1189 122 792 27.58 59.40 59.86

Table 7. The highest F-values score using the ANOVA F-test for
both temperature subgroups.

Day ahead
prediction

Low-temperature
subgroup

High-temperature
subgroup

3 mean diastolic min diastolic

4 min diastolic mean diastolic

5 SD SpO2 max systolic

7 min diastolic mean SpO2
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AUC, which is the area under the receiver operating character-
istics (ROC) curve. The area under the curve (AUC) were used
in many studies as an evaluation metric.19,23 The values in par-
entheses indicate standard deviations. However, since the data-
set used in this study is a severe imbalance class, the G-mean
was selected to evaluate performance.

The approach used by Amer et al.24 outperforms the other
two methods in terms of all four metrics. Our approach has
higher performance than that of Baker et al.23 Although this
approach does not outperform the best approach found in the
literature, the VSbT effects were made clear. Our method
achieved a G-mean of 64.62% for 3-day ahead predictions.
Unlike prior studies, ourmethod relies on sparser and irregularly
sampled vital signs from the nurseChart table, without labora-
tory data, reflecting the resource limitations of care facilities.
In contrast, Amer et al. and Baker et al. used denser or more fre-
quent monitoring data, which are often not feasible in long-term
care settings. Most importantly, we introduce the consideration
of VSbT, which revealed distinct mortality-related patterns not
explored in previous work.

Evaluation results for least number of vital sign
records per day
Figure 7 presents the 3-day Ahead Prediction performance
metrics of one vital sign from temperature, HR, and SBP
measured with changing time-interval, but the other two
measured with the smallest time interval. The temperature
records exhibited the highest G-mean at the 1-minute inter-
val (64.46%). In contrast, for HR, the peak G-mean was
observed at the 60-minute interval (65.42%). Similarly,

SBP records also demonstrated the highest G-mean at the
60-minute interval (62.97%). These findings suggest that
HR and SBP should be measured every 60 minute, while
temperature data ideally should be measured every minute
for the highest predictive G-mean. However, practical con-
straints in facility care may limit the feasibility of recording
temperature at such a high frequency. Therefore, recording
temperature data every 15 minute, 45 minute, or even
240 minute could be viable alternatives. The 240-minute
interval appeared to be particularly practical in facility
care settings, as it sustained prediction performance within
a negligible 0.01 difference in G-mean when compared to
the more demanding 1-minute interval.

Discussion

The threshold values results from exploration and
clinical vSbT criteria
The thresholds of each vital sign vary with the number of
days to predict ahead, reflecting VSbT on the MRP with dif-
ferent timeframes. The results indicate that 3-day ahead pre-
dictions achieved the highest G-mean, followed by 5-day,
4-day, and finally 7-day ahead predictions. These results
are logical because vital signs undergo rapid changes during
the final 3 days of life,67 making data from the 3 days prior
to death more challenging for accurate mortality predic-
tions. From a clinical perspective, making decisive predic-
tions based on information gathered more than 3 days
before death could be challenging. However, this research

Figure 5. G-means for different feature combinations for low- and high-temperature subgroups.
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shows that specific criteria are linked with mortality through
the MRP results.

As shown by the maximum G-mean values in Table 2,
the thresholds of three vital signs (temperature, HR, and
RR) for 3-day ahead predictions correspond to the SIRS

criteria, which denotes HR > 90 beats/minute,
Temperature > 38.0 °C, and RR > 20 breaths/minute.
These specific thresholds are associated with sepsis-
related mortality.68 Furthermore, previous clinical stud-
ies indicated that a fever lasting more than 5 days was

Figure 6. G-means for final results (step 3) with and without temperature event features for different day ahead predictions.

Table 8. Comparison of classification results from the final step with different classification models and combined features for 3-day
ahead predictions.

Model Combined features TP TN FN FP F1-Score (%) G-Mean (%) Accuracy (%)

SVM (linear
kernel)

Vital sign 186 1294 110 687 31.82 64.07 65.00

Vital sign+ high/low subgroup
indicator

170 1294 126 687 29.49 61.25 64.30

SVM (RBF kernel) Vital sign 185 1254 111 727 30.63 62.90 63.20

Vital sign+ high/low subgroup
indicator

171 1223 125 758 27.92 59.72 61.22

DT Vital sign 190 1244 106 737 31.07 63.49 62.98

Vital sign+ high/low subgroup
indicator

173 1283 123 698 29.65 61.52 63.94

RF Vital sign 176 1281 120 700 30.03 62.01 63.98

Vital sign+ high/low subgroup
indicator

158 1382 138 599 30.01 61.02 67.63

NB Vital sign 122 1595 174 386 30.35 57.61 75.41

Vital sign+ high/low subgroup
indicator

154 1459 142 522 31.69 61.90 70.84

LR Vital sign 189 1295 107 686 32.28 64.61 65.17

Vital sign+ high/low subgroup
indicator

193 1277 103 704 32.36 64.83 64.56
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associated with an increased risk of mortality,35 which is
consistent with the results of this study. The input for
3-day ahead predictions include recordings from day 3rd

to day 6th before death. Additionally, DBP>110 mmHg indi-
cate grade 3 hypotension criteria and SBP>130 mmHg is
considered high normal.43,44

As shown in Table 3, for 4-day ahead predictions, tem-
perature≤ 35 °C denotes hypothermia, DBP > 90 mmHg

indicates grade 1 hypertension43,44; SBP > 160 mmHg indi-
cates grade 3 hypertension,43,44 HR< 60 beats/minute indi-
cates Tachyarrhythmia and Bradycardia52; and RR< 12
breaths/minute is the beginning triage of abnormal.

As shown in Table 4, the threshold for 5-day ahead pre-
dictions has the same SIRS criteria as with 3-day ahead pre-
dictions, but a temperature threshold of 40.0 °C is an urgent
criterion.47 DBP >110 mmHg indicates grade 3 hyperten-
sion43,44 and SBP< 90 signifies urgent criteria.47

For 7-day ahead predictions as shown in Table 5, RR>
30 breaths/minute signifies urgent criteria while SBP<
90 mmHg and SpO2 < 80% are criteria for resuscitation.47

DBP > 110 mmHg indicates grade 3 hypertension.43,44

Temperature≤ 36.5 °C is the low boundary for normal
temperature.

Taking these results as a whole, the thresholds of vital signs
in 3-day ahead predictions agree with clinicians’ experiences
as reflected in SIRS, which means the indicators for
analyzing 3-day ahead mortality are sufficiently clear for use
by clinicians. For example, the thresholds for temperature
(≥ 38.0°C), HR (> 90 beats/minute), and RR (> 20 breaths/
minute) precisely match the SIRS criteria used by clinicians.
But for 4-day, 5-day, and 7-day ahead predictions, the indica-
tors for classification differ; there is no available common clin-
ical criterion for VSbT. Therefore, the findings of this study
not only validate existing clinical knowledge but also provide
novel insights that could inform more temporally clinical
decision-making processes.

Various vital signs in day ahead predictions with
clinical insight
The DBP> 110 mmHg threshold exhibits the highest per-
formance for 3-day, 5-day, and 7-day ahead predictions,
while 4-day ahead predictions have a threshold of DBP>
90 mmHg. Thus, the threshold of DBP> 110 mmHg is an
important indicator. The SBP thresholds for the 3-day and
4-day ahead predictions are associated with hypertension,
whereas the SBP thresholds for 5-day and 7-day ahead pre-
dictions are categorized as urgent criteria. This performance
suggests that SBP< 90 mmHg is an indicator for prediction
for more than 5 days before death. Furthermore, SBP>130 is
a key determinant for predictions for less than 4 days ahead.

Table 9. Comparing with related studies in terms of the performance of 3-day ahead prediction.

Method Precision (%) Recall (%) F1-score (%) G-mean (%) Accuracy (%) AUC

23 a 65.85 (15.31) 19.80 (3.91) 27.01 (4.61) 59.72 (6.34) 56.61 (11.21) 0.5845 (0.0545)

24 b 66.89 62.80 32.17 64.81 63.33 0.6850

Oursb 66.55 62.74 32.01 64.62 63.24 0.6013

a10-Fold cross validation.
bLeave-one-out cross validation

Figure 7. G-means for records evaluation: (A) temperature,
(B) heart rate, and (C) systolic blood pressure.
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The maximum G-mean for SpO2 < 95% was observed in
3-day, 4-day, and 5-day ahead predictions, while SpO2 <
80% represents the maximum G-mean for 7-day ahead pre-
dictions, indicating urgent criteria. Therefore, the threshold
of SpO2 < 80% could serve as an essential marker for 7-day
ahead predictions. Since the thresholds for HR, RR, and
temperature exhibit inconsistency across different time-
frames, it is reasonable to infer that the importance of these
vital signs as indicators changes during end of life.
However, this inference needs further investigation.

Temperature event feature effects
The temperature thresholds used to split the dataset for
3-day, 4-day, 5-day, and 7-day ahead predictions were as
follows: ≥38.0 °C, ≤35.0 °C, ≥40.0 °C, and ≤36.5 °C,
respectively. These thresholds are seen in the results of tests
with temperature event features and statistical features in
both the high and low subgroups as depicted in Figure 5.
For 3-day and 5-day ahead predictions, the thresholds are
associated with fever. As a result, temperature event fea-
tures for the high subgroup and the statistical features for
the low subgroup perform the best. Meanwhile, for 4-day
ahead predictions, temperature event features for the low-
temperature subgroup and statistical features for the high-
temperature subgroup perform the best. For 7-day ahead
predictions, the threshold is the lower boundary of the normal
temperature range. Nevertheless, the best features for this pre-
diction are temperature event features for the low-temperature
subgroup and statistical features for the high-temperature
subgroup.

As shown in Figure 6, temperature event features are
superior for 3-day and 4-day ahead predictions, with G-means
of 64.62% and 63.48%, respectively. These results suggest
that fever might be related to mortality at least 4 days prior to
death, which partially agrees with clinical findings that fever
lasting more than 5 days was associated with mortality.35

However, the temperature event features do not provide useful
information for 5-day and 7-day ahead predictions.

Additionally, the top features for both low- and high-
temperature subgroups in Table 7 for 3-day and 4-day ahead
predictions are the same in two groups: mean diastolic and
min diastolic. For 5-day ahead predictions, the top features
of both groups are SD SpO2 and max systolic. For 7-day
ahead predictions, the highest F-values score of features
are min diastolic and mean SpO2. These results indicate
that blood pressure and SpO2 combined with temperature
event features might be significant indicators of mortality
for different timeframes.

Combined features
The results indicate that the LR model was the best choice
of classification model. Moreover, the LR model had a sig-
nificant impact when combined with additional group

features. Some models, like SVM (both linear and RBF ker-
nels), DT, and RF, exhibited a decrease in performance
when additional group features were included. However,
other models, like NB and LR, showed improved perform-
ance. Therefore, the benefit of incorporating additional fea-
tures may depend on the model’s ability to handle complex
interactions within the data.

LR performed consistently well across both feature sets,
particularly excelling in G-mean. The improvement in
G-mean with the addition of group features implies that
these features provide valuable additional information that
enhances the model’s discriminative power.

The inclusion of combined features generally had a
mixed impact on the models. While some models such as
LR benefited from the additional features, other models,
particularly SVM (RBF kernel), showed a decrease in per-
formance. The implication is that the utility of additional
features depends on how well they contribute to distin-
guishing between classes. Moreover, some models might
be more sensitive to irrelevant or redundant features.

The effect of the least number of vital sign records
per day
For large time intervals between measurements, peak points
may be lost. As shown in Figure 4, this loss caused a shrink-
ing range of values and a loss of diverse information. As
time intervals increase, capturing the true minimum and
true maximum values becomes increasingly challenging.
For example, in the context of HR and SBP, a 60-minute
time-interval still retains some local maximum and min-
imum points, whereas a 120-minute time interval results
in reduced information granularity. This loss of detail can
significantly impact the performance of classification mod-
els. It particularly affects G-mean values. When considering
temperature data, some patients exhibit highly fluctuating
temperature signals. Therefore, larger time intervals create
a higher risk of missing peak information that could deter-
mine whether or not a patient is experiencing fever. These
findings have direct implications for care facilities, where
staffing constraints often limit the frequency of vital sign
measurements. Our analysis suggests that while continuous
monitoring would be ideal, obtaining vital signs at strategic
intervals could maintain prediction accuracy while remain-
ing feasible within typical care facility workflows.

Contributions and limitations of this study
The novelties and contributions of this study lie in taking
into consideration the VSbT effect for MRP. This effect
might help provide more information regarding treatment
decisions using MRP. As a result of this study, the criteria
for VSbT might be either redefined or reassured, which
might be an important step forward in our understanding
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of vital sign changes during the end of life. Better under-
standing may lead to improvements in palliative care and
outcomes. However, MRP should not be used to replace
clinicians’ or nursing staffs’ decisions. Instead, MRP can
serve as a decision support tool for impending death situa-
tions. The criteria acquired through classification trials
could be used to (a) verify the currently available heuristics
or experiences for determining impending death, and (b)
complement current VSbT by providing practical guide-
lines for different timeframes.

The MRP model used in this study could be integrated
into existing clinical workflows, requiring only routine vital
signs measurements and basic demographic information.
The model can be embedded within electronic health
records systems to automatically calculate mortality risk
using the identified statistical features, particularly tempera-
ture patterns and DBP measurements. This approach could
create an early notification system to recognize signs of
impending death. Because the model is interpretable and
based on clinically familiar thresholds, it aligns with estab-
lished criteria. This design facilitates potential integration
into clinical workflows, for example as a decision-support
tool that complements existing scoring systems and could
be implemented within electronic health record platforms.
Care facilities can allocate resources more efficiently and offer
suitable support care for residents. For high-risk residents, the
system prompts timely family conversations about goals of
care and end-of-life preferences. This approach transforms
statistical findings into practical clinical tools that support
timely interventions. It also enhances communication about
end-of-life care, ultimately improving care quality for care
facility residents during their final days.

Our primary motivation was to develop a model that
reflects clinical reality rather than simply maximizing statis-
tical performance. The split-group approach explicitly
acknowledges that vital signs have different prognostic sig-
nificance depending on whether VSbT have been applied.
This is supported by our analysis, which showed markedly
different feature importance rankings between high- and
low-threshold groups (Table 7). For example, in 3-day pre-
diction, the highest-ranked feature in the high-temperature
subgroup was min diastolic while in the low-temperature
subgroup it was mean diastolic. This confirms that the
physiological dynamics differ between these groups, sup-
porting separate modeling approaches. We chose not to
use deep neural networks despite their potential for higher
performance because their operation is often opaque to clin-
icians. In contrast, our approach used interpretable models
like SVM and LR. This decision was driven by the clinical
need for transparent decision-making in end-of-life care
contexts.

This study used a dataset from eICU-CRD48 which con-
tains records for over 160,000 patients that were admitted
into ICUs. However, it is important to note that the analysis
in this study was limited to a subset of the database’s

population. Specifically, this study focused on patients
who had been in an ICU for at least 8 days. These patients
may not have received complete palliative care, and their
vital signs may have been confounded by life-resuscitation
treatments. Additionally, the dataset is derived entirely from
a U.S.-based ICU cohort, which may not represent the oper-
ational characteristics of care facilities in other countries.
Variations in staffing, clinical protocols, and patient popula-
tions may limit the generalizability of our findings. In order
to strengthen the generalizability of this study’s findings,
future research should be conducted in long-term care and
hospice facilities. Care facilities likely have more variability
in VSbT and in treatment outcome compared to ICUs. Care
facilities potentially have more incomplete treatment cases
and less aggressive interventions. These differences would
affect the generalizability of this study’s findings regarding
the intended application environment. However, a limita-
tion of this study is the absence of external validation on
a separate dataset or real-world care facility population.
Although our model demonstrates potential, its generaliz-
ability remains unconfirmed and warrants further testing
in long-term care and hospice populations, where VSbT
patterns differ substantially from ICU contexts. Future
research should validate these models in actual long-term
care and hospice facilities where VSbT patterns differ sub-
stantially from ICU environments. Additionally, this study
encountered limitations with the data quality and number
of records. The records found in the “nurseChart” table
were often unevenly measured and sparse, which limited
the number of usable records. This required us to select
only samples that contained enough records for processing,
resulting in a final dataset of 2277 patients. As a result, The
smaller number of usable records might have affected the
accuracy and reliability of this study’s results because
only samples with a sufficient number of records were
included. Future studies should consider implementing
data cleaning and preprocessing techniques to address these
inconsistencies, potentially leading to more precise and
dependable findings.

This study provides further evidence for the importance
of considering VSbT effects in MRP. The improved per-
formance of the split approach, which accounts for VSbT
by analyzing subgroups based on clinically relevant thresh-
olds, demonstrates that these interventions create distinct
risk profiles. These findings align with the findings in other
studies. For example, Wu et al.37 demonstrated that expli-
citly modeling vasopressor intervention timing improved
outcome predictions in ICU patients. Similarly, Ghassemi
et al.39 showed that switching state space models account-
ing for intervention events performed well. These studies,
along with clinical findings that aggressive fever manage-
ment can increase mortality in septic patients, support the
approach of splitting datasets at clinically relevant thresh-
olds which allow better capture of distinct physiological
dynamics and improved prediction accuracy.
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Conclusion
In this study, MRP based on VSbT effect was proposed. To
clarify the VSbT effect, various thresholds were evaluated.
The threshold evaluation results demonstrate that utilizing
specific vital sign thresholds improves predictive perform-
ance across 3-day, 4-day, 5-day, and 7-day ahead predic-
tions, with the highest G-mean achieved for each
prediction timeframe varying based on the threshold used.
Splitting the dataset can improve the performance of
MRP. The proposed classifier approach achieved a
G-mean of 64.62%, compared with a G-mean of 63.07%
for the non-split approach for 3-day ahead predictions.
The temperature event features contributed to the improve-
ment of classification performance in 3-day and 4-day
ahead predictions. The 3-day predictions achieved the high-
est performance followed by 5-day, 4-day, and 7-day pre-
dictions. This study offers clear evidence of the effect that
VSbT has on predictions. However, the accuracy of
VSbT should be tested in long-term care and hospice care
settings before its adoption in palliative care settings.
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