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Abstract—Telephone fraud often involves criminals imperson-
ating relatives or public officials in conversational contexts.
Conventional sentence-level detection methods fail to capture
the semantic flow and relational structure of such fraudulent
dialogues. In this study, we construct a unique fraud dataset
collected from official Japanese police websites, categorized into
four classes: police, city hall, a relative, and a bank.

We propose a Semantic-Structure Graph Attention Network
(SS-GAT) that explicitly models conversational semantic relations
between utterances. Unlike conventional transformers that treat
conversations as linear text, our approach represents dialogue
as a graph, where utterances are nodes and edges capture
semantic and structural relations (e.g., question–answer, instruc-
tion–response). Graph Attention Network (GAT) mechanisms
are applied to weight relevant contextual relations for intention
classification.

In our experiments, using an architecture with a single GAT
layer and frozen BERT, we achieved an average accuracy of
93.58% and F1-score of 94.59%. In comparison, baseline trans-
formers failed to classify many classes. Notably, frauds involving
impersonation of bank employees were the most difficult to detect
due to their procedural, instruction-driven conversational style,
which closely resembles frauds by other public institutions.

Index Terms—Fraud detection, conversational modeling, graph
neural networks, GAT, semantic relations

I. Introduction

A. Background

Telephone fraud has become increasingly sophisticated, with
criminals impersonating trusted figures such as relatives, city
hall employees, police officers, or bank officials. These conver-
sations follow structured patterns: fraudsters establish credible
identities, create urgent situations, and guide victims through
step-by-step instructions. As of December 2024, reported
special fraud cases reached 3,494 with losses totaling 15.31
billion yen, highlighting the critical need for early detection
systems.

B. Problem Statement
Current detection methods analyze individual utterances

in isolation, failing to capture the conversational flow and
relational structures that characterize fraud interactions. While
Bidirectional Encoder Representations from Transformers
(BERT) and other transformer models excel at text classi-
fication, they model linear sequences rather than interactive
dialogue structures. The challenge lies in detecting manipula-
tive intent embedded in dialogue patterns rather than isolated
fraudulent words.

C. Our Approach and Contributions
We propose a Semantic-Structure Graph Attention Net-

work (SS-GAT) that represents conversations as graphs where
utterances are nodes and edges capture semantic relations
(e.g., Question–Answer (Q–A), instruction–response). Unlike
prior binary fraud detection approaches, we focus on four-way
typology classification using discourse-level patterns.

Our contributions are threefold:
1) We construct a novel dataset from official Japanese

police sources with four impersonation categories (rela-
tive, city hall, police, bank) and balance it via carefully
controlled Large Language Model (LLM) augmentation.

2) We propose SS-GAT that represents conversations as
utterance graphs connected by semantic and structural
relations, allowing attention to focus on relational cues
indicative of manipulative intent.

3) We benchmark SS-GAT against transformer baselines
and show significantly higher accuracy and F1-scores
for four-way typology classification.

This research contributes to the growing field of conver-
sational AI and its application to social good by offering a
practical solution for early fraud detection.
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II. Related Work

This work proposes SS-GAT, an original model that in-
tegrates a Japanese BERT with a Graph Attention Network
(GAT). Unlike approaches that focus on extracting keywords or
key sentences, we define explicit relations between utterances,
construct a conversational graph, and model the semantic
flow across the dialogue. We organize prior work into three
groups—key-sentence approaches, BERT/Transformer-based
approaches, and GAT-based approaches—and clarify how our
work relates to and differs from each.

A. Key-Sentence-Based Approaches

Gao et al. (2024) [1] introduce a Multi-Level Dynamic
TextRank (MDTR) algorithm to extract semantically coherent
key-sentence summaries from long dialogues, then embed
the summarized text with BERT and enhance features via
hierarchical attention. They also design a keyword list and
compute keyword frequencies for fraud and non-fraud data,
derive a “degree of correlation” for each keyword, and use
highly correlated keywords for fraud detection. Earlier tele-
phone conversation linguistic fraud modeling using linguistic
features is reported in [2]. In addition, recent studies have
proposed cost-sensitive graph models, RoBERTa-based ap-
proaches, dynamic sparse attention, real-time AI detection,
voice phishing detection, and call content understanding for
fraud detection [3]–[8].

B. Transformer-Based Approaches

BERT is a bidirectional pre-trained encoder that achieves
strong performance across tasks via masked language model-
ing (MLM) and next sentence prediction (NSP) [9], [10]. Wang
et al. (2021) [11] fine-tune a multi-label BERT for outbound
fraud-risk detection, using the final hidden state of the [CLS]
token for classification. Recent work also includes RAG-based
LLMs [12], real-time phone scam detection [13], [14], and
large audio language models for telecom fraud [15]. Gao et
al. (2024) [1] present HDRIN, combining DialogBERT, slid-
ing windows, MDTR-based summarization, and Hierarchical
Attention Networks (HAN) to capture dual-role interactions. Li
et al. (2024) propose RoBERTa-MHARC, coupling RoBERTa
with multi-head attention and residual connections to better
capture multifaceted contextual cues. Qin et al. (2020) report
that their Co-GAT framework benefits further when coupled
with pre-trained encoders such as BERT, RoBERTa, or XLNet.
Lin et al. (2024) [16] introduce FraudGT, a Graph Trans-
former with attention mechanisms and edge-aware components
that addresses limitations of message-passing GNNs.

C. GAT-Based Approaches

Recent GAT-based approaches include joint dialog act
recognition and sentiment classification using co-interactive
graph layers with multi-head attention [17]–[19]. Gao et al.
(2024) [1] present RCGN, combining GCN, GAT, and Graph-
SAGE to detect fraud leaders in telecom networks, using GAT
to assign adaptive weights to neighbors and mitigate error

propagation. Hu et al. (2023) [20] survey graph-based meth-
ods (GCN, GAT, GraphSAGE) for mobile network fraudster
mining, highlighting efficiency in financial and social fraud
scenarios. Wang et al. (2019) develop a semi-supervised GAT
for financial fraud detection. Liang et al. (2021) evaluate RGAT
(relation-aware GAT) for conversational emotion recognition,
leveraging relation attention and relative positional encoding.
Lin et al. (2024) [16] benchmark GAT as a strong base-
line when introducing FraudGT. Hu et al. (2024) propose
GAT-COBO, a cost-sensitive boosted GAT that addresses class
imbalance in telecom fraud detection by focusing attention
on the most informative parts. Other notable works include
emotion recognition and speaker/position-aware graph models
for conversation analysis [21]–[23].

III. Dataset
The dataset for this study is based on audio data published

on official Japanese police websites. These audio recordings
are authentic accounts of fraud cases and serve as a reliable
resource for training and evaluation. The dataset includes the
following four fraud categories:

Relation annotation was conducted by a native
Japanese annotator (the first author) following a
concise, example-based guideline tailored to telephone
conversations. We specified relation labels for each sequential
dialogue—Introduction/Greeting, Explanation/Guidance,
Request/Demand, Question/Confirmation, Fraud Action,
Denial/Refusal, Response/Reply, Switch/Transition, and
Emotional Expression—using minimal decision cues (e.g.,
interrogative forms, request constructions, and confirmation
patterns), and provided dialogue examples in Table I. Formal
assessment of inter-annotator agreement was not undertaken
due to resource limitations.

1) Relative impersonation fraud: the perpetrator pretends to
be a family member in trouble.

2) City hall impersonation fraud: the criminal claims to
represent municipal offices.

3) Police impersonation fraud: the criminal pretends to be
a law enforcement officer.

4) Bank impersonation fraud: the criminal poses as a
financial institution employee.

The dataset contains 22 data instances for each class.

IV. Methodology
A. Input Processing and Text Encoding

The SS-GAT framework processes dialogue data beginning
with individual Utterances as the fundamental input units.
Each utterance represents a conversational turn containing both
textual content and metadata. The Text Encoder utilizes a
pre-trained BERT model (cl-tohoku/bert-base-japanese-v3)
to transform each utterance into semantic representations. This
pre-trained model is essential because it provides rich contex-
tual understanding of Japanese language patterns, eliminating
the need to learn basic language semantics from scratch on
limited fraud detection data.
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TABLE I
Utterance Pairs and Relations

Relation Utterance (Speaker: Content)
Self-introduction /
Greeting

Perpetrator: I am Kawai from the Health Insurance Division of XX City Hall.

Explanation / Guidance Perpetrator: We sent the application form last November.

Denial / Refusal Victim: I haven’t received it.

Denial / Refusal Victim: I don’t recall it.

Fraudulent Action Perpetrator: Insurance premiums for Heisei 22–27: 23,368 yen.

Fraudulent Action Perpetrator: You didn’t submit the documents.

Request / Demand Perpetrator: You were required to fill in the transfer destination and submit.

Fig. 1. Dataset distribution analysis showing the four fraud categories
(relative, city hall, police, bank) with balanced class representation. Each
category contains 22 authentic fraud case recordings from official Japanese
police websites, totaling 88 instances for the base dataset.

Fig. 2. Dialogue length distribution and utterance statistics across fraud cat-
egories. The average dialogue length is 18 utterances with standard deviation
of 4.3, showing consistent conversational patterns across different fraud types
that enable systematic graph-based analysis.

The BERT model processes each utterance through its trans-
former architecture, with the final [CLS] token representation
serving as a 768-dimensional semantic vector that captures
the utterance’s complete contextual meaning. To address the
challenge of small-scale datasets prone to overfitting, these
high-dimensional features undergo compression from 768 to
128 dimensions through a linear transformation followed by
ReLU activation and layer normalization.

B. Multi-Head Attention Enhancement

The compressed text representations are enhanced through
Multi-head attention mechanisms that capture intra-dialogue
dependencies before graph processing. This attention layer is
crucial for identifying relationships between utterances within
the same conversation, allowing the model to understand how
different parts of a dialogue relate to each other semantically.
The multi-head design enables parallel attention computation
across different representation subspaces, capturing diverse
types of utterance relationships simultaneously.

Following the attention computation, Add & Norm opera-
tions are applied, implementing residual connections combined
with layer normalization. These operations are essential for
training stability, preventing gradient vanishing problems, and
allowing information from the original compressed repre-
sentations to flow through alongside the attention-enhanced
features.

C. Speaker and Relation Encoding

The framework incorporates multimodal information
through specialized encoders. The Speaker Encoder processes
Speaker ID information, distinguishing between perpetrator
and victim roles through learnable 128-dimensional
embeddings. This speaker-aware modeling is critical for
fraud detection because fraudulent conversations exhibit
distinct patterns based on participant roles, with perpetrators
typically following specific deception strategies while victims
display characteristic response patterns.

The Relation Encoder processes Edge relations that
capture semantic relationships between utterances.
Ten distinct relation types are supported: Introduc-
tion/Greeting, Explanation/Guidance, Request/Demand,
Question/Confirmation, Fraud Action, Denial/Refusal,
Response/Reply, Switch/Transition, and Emotional Expression.
Each relation type receives a learnable scalar weight that
modulates attention computation during graph message
passing, allowing the model to automatically emphasize
fraud-indicative relations such as "Fraud Action" while
de-emphasizing routine conversational elements.
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Fig. 3. SS-GAT framework overview showing the processing pipeline from input dialogue through graph construction to classification. The architecture
consists of three main components: (1) Text-First Processing module that enhances BERT embeddings with multi-head attention, (2) Graph Construction
module that integrates speaker and relation information with hard adjacency constraints, and (3) GAT Processing layers with explicit edge-based attention for
fraud detection.

D. Hard Graph Construction
The core innovation lies in the hard graph structure where

nodes represent individual utterances and edges represent
explicit adjacency relationships. An Adjacency Mask en-
forces structural constraints derived from human-annotated
graph structures, preventing attention computation over non-
connected utterance pairs. This hard constraint approach is
essential because it ensures the model respects actual con-
versational flow and turn-taking patterns, which are critical
indicators in fraud detection scenarios.

Unlike soft attention mechanisms that can learn spurious
relationships, the adjacency mask guarantees that the GAT
Model focuses only on meaningful conversational connections.
This constraint is particularly important for fraud detection
where the sequence and structure of deceptive tactics follow
predictable patterns that must be preserved during learning.

E. Graph Attention Network Processing
The GAT Model implements the core graph reasoning

through hard attention constraints. The model computes atten-
tion weights between connected utterances while completely
ignoring non-adjacent pairs, as defined by the adjacency mask.
Each attention head in the multi-head architecture captures dif-
ferent aspects of utterance relationships, with relation-specific
weights modulating these attention scores based on edge types.

The GAT layer processes the combined node features (text
& speaker information) and propagates information through
the graph structure, allowing each utterance to aggregate rele-

vant information from its connected neighbors. This message
passing mechanism enables the model to understand complex
conversation dynamics where the meaning of individual ut-
terances depends on their context within the broader dialogue
structure.

F. Classification and Output Generation
Following graph processing, node representations undergo

residual connections and layer normalization to maintain
training stability. Global Mean Pooling then aggregates the
variable-length dialogue sequences into fixed-size representa-
tions, computing the average of all node embeddings to create
a dialogue-level feature vector. This pooling operation is neces-
sary because dialogues contain varying numbers of utterances,
but the classification layer requires fixed-dimensional input.

The final Linear classification layers transform the pooled
dialogue representation into class-specific scores. A two-layer
MLP architecture with ReLU activation processes the 128-
dimensional pooled features, ultimately producing Logits for
the four fraud categories: bank employee impersonation, police
officer impersonation, family member impersonation, and city
hall employee impersonation. These logits represent unnormal-
ized class probabilities that are subsequently processed through
softmax and cross-entropy loss for training.

G. Architectural Advantages
The SS-GAT architecture addresses key challenges in fraud

detection through its design choices. Frozen BERT parame-
ters reduce overfitting risk while maintaining semantic un-
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derstanding, compressed dimensions (768→128) match the
small dataset scale, and hard graph structure prevents spurious
relationship learning. The combination of text-first processing
with explicit graph constraints enables robust performance
on limited fraud detection datasets while maintaining inter-
pretability through explicit attention mechanisms and relation-
aware edge modeling.

V. Experiments

We employ a frozen pre-trained Japanese BERT as the
text encoder, projecting its 768-dimensional embeddings to
128 via a linear layer with ReLU and layer normalization to
reduce overfitting on the small-scale fraud detection dataset.
The graph component is a single-layer GraphAttentionNet-
work with one attention head, residual connections, and layer
normalization; attention is constrained by explicit adjacency
masks from human-annotated dialogue structures, and ten re-
lation types each have a learnable scalar weight that modulates
attention during message passing.

Training uses AdamW with a learning rate of 1 × 10−3, L2
weight decay of 1 × 10−5, gradient clipping at a max norm
of 1.0, dropout of 0.1 for GAT and 0.3 for baselines, a batch
size of 16, and 20 epochs. Evaluation follows stratified five-
fold cross-validation, reporting mean and standard deviation
across folds; all experiments are implemented in PyTorch on
an NVIDIA GPU.

A. Results

TABLE II
Comparison with Transformer baseline.

Model Accuracy F1 score

SS-GAT 93.58% 94.59%
Transformer 84.67% 83.54%
dialogue BERT 80.00% 80.73%
key sentence BERT 55.38% 55.37%
LSTM 89.67% 84.98%
BiLSTM 92.25% 91.12%

Table II summarizes the comparative results across baseline
and proposed models. SS-GAT achieves the best performance,
reaching 93.58% accuracy and 94.59% F1, substantially out-
performing all baselines. Among transformer-based baselines,
the vanilla Transformer attains 84.67% accuracy and 83.54%
F1. The dialogue BERT model, which processes inputs at
the granularity of individual sentences, yields 80.00% accu-
racy and 80.73% F1, while the key sentence BERT model,
operating at the granularity of individual words, performs
markedly worse with 55.38% accuracy and 55.37% F1. Re-
current baselines show competitive results: LSTM achieves
89.67% accuracy and 84.98% F1, and BiLSTM improves
further to 92.25% accuracy and 91.12% F1. Overall, SS-
GAT delivers a clear margin over both transformer-based and
recurrent alternatives, highlighting the effectiveness of the
proposed approach.

VI. Discussion
A. Effectiveness of Relation Information

Incorporating relation information into the graph attention
mechanism enhances structural modeling of dialogue. The
model assigns learnable scalar weights to ten relation types
(e.g., greeting/identification, explanation/guidance, request,
question/confirmation, fraudulent action, denial/rejection, re-
sponse, topic shift, emotion expression, unlabeled). This ap-
proach enables differential emphasis on interaction types that
are salient for fraud detection; for instance, fraudulent actions
can be amplified during feature aggregation, improving sensi-
tivity to key manipulative moves.

The simplicity of scalar weighting offers practical advan-
tages over more complex relation embeddings by reducing pa-
rameterization and risk of overfitting in low-resource settings.
However, two constraints limit effectiveness. First, the use of a
hard graph structure prevents attention to nodes without anno-
tated edges, which curbs spurious connections but may omit
meaningful long-range dependencies typical of conversational
manipulation. Second, performance is sensitive to annotation
quality: mislabeled or missing relations propagate as structural
errors that degrade inference.

Empirical comparison with a strong text-only baseline
shows modest gains, indicating that relation types contribute
useful but incremental information. This outcome suggests that
current label granularity may be insufficient to capture the
nuanced progression of fraud. Future work should evaluate
hierarchical taxonomies and richer relation representations that
encode intensity, temporality, and compositionality.

B. Effectiveness of Contextual Information
The architecture emphasizes contextual understanding

through a pipeline that leverages pretrained language repre-
sentations, intra-dialogue attention, and structure-aware prop-
agation. Pretrained Japanese language representations provide
robust semantics while mitigating overfitting in a small data
regime. Dimensionality reduction serves as regularization,
retaining salient fraud-related cues while improving general-
ization.

Multi-head attention supports the modeling of diverse con-
textual phenomena, such as turn-taking dynamics, topical
coherence, and pragmatic signals. Nonetheless, limited head
count and reduced hidden dimensionality constrain capacity
to capture heterogeneous patterns prevalent in complex dia-
logues. A further limitation is the absence of explicit positional
or temporal encoding beyond the implicit sequential structure
of pretrained representations. Fraud conversations often unfold
through phases (trust-building, information elicitation, mone-
tary request); explicit modeling of temporal progression could
strengthen sensitivity to staged manipulation.

C. Effectiveness of Speaker Information
Explicit representation of speaker roles (fraudster and vic-

tim) adds an interaction-centric signal that complements tex-
tual content. Speaker-aware modulation allows identical utter-
ances to be interpreted differently depending on the source,
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reflecting role-specific pragmatics and intent. This is particu-
larly relevant in fraud contexts, where power dynamics, turn
control, and persuasion strategies differ systematically between
participants.

Effectiveness is tempered by simplifying assumptions. Bi-
nary role assignment may not capture multi-party interactions
or shifting roles over time. Moreover, a basic integration
mechanism can underrepresent complex speaker-conditioned
patterns such as strategic politeness, hedging, or escalation. A
more expressive design—e.g., role hierarchies, dynamic role
inference, or adaptive gating that learns when to prioritize
speaker versus textual cues—may yield stronger gains. No-
tably, speaker information can meaningfully guide information
flow in the graph, for example by emphasizing victim-centric
context when tracing manipulative tactics.

D. Effectiveness of Graph Attention Networks
A hard-constraint graph attention formulation brings struc-

tural rigor to dialogue modeling by restricting attention to
annotated edges. This design embodies the intuition that
conversational structure—turn adjacency, topical links, and
rhetorical relations—should delimit information propagation.
The resulting improvements over a text-only baseline are
consistent yet modest, suggesting that while structural signals
are beneficial, much of the useful context is already captured
by pretrained sequential models.

The hard-constraint paradigm enhances interpretability, as
attention weights can be analyzed in relation to explicit
discourse relations. However, it limits discovery of latent or
implicit links, which are often crucial in detecting subtle
manipulation that spans distant turns. Model depth and ca-
pacity are intentionally constrained to prevent overfitting in
a small dataset, trading expressive power for stability. These
choices are appropriate for the current data scale but may cap
performance.

Generalization remains a challenge: if test dialogues exhibit
relation patterns unseen during training, the model has limited
means to adapt. Hybrid designs that combine hard structural
constraints with learnable soft attention for unannotated or
uncertain links could improve robustness. Finally, the approach
is computationally efficient due to sparsity induced by the
structural mask, making it suitable for practical applications.

Overall, relation signals, contextual modeling, and speaker
information each contribute complementary strengths. Their
combined effect is positive but bounded by data scale, an-
notation fidelity, and model capacity. Future research should
prioritize richer and more consistent annotations, explicit
modeling of temporal progression, more expressive speaker
role representations, and hybrid structural mechanisms. Larger
corpora would support deeper graph architectures and more
nuanced relation models, enabling stronger gains in fraud
detection performance.

VII. Conclusion
This work shows that combining semantic understanding

with explicit dialogue structure improves fraud detection. Our

proposed SS-GAT (semantic-structure-based Graph Attention
Network) integrates pretrained language representations with
relation- and speaker-aware graph reasoning. The improve-
ments over strong text-only baselines are modest but consistent
and interpretable, supporting the view that modeling discourse
relations and participant roles adds value beyond sequential
text processing.

SS-GAT has three main strengths: it unifies semantic
and structural signals, offers transparent behavior through
structured attention, and remains computationally efficient.
Nonetheless, performance is limited by small datasets, coarse
relation labels, and shallow graph capacity for capturing long-
range, implicit manipulation.

Future work should focus on:
1) Richer annotations: expand relation types and improve

labeling quality.
2) Temporal modeling: add explicit timing and dialogue

phase indicators.
3) Role modeling: move beyond binary roles and allow

roles to change over time.
4) Hybrid attention: combine hard structural constraints

with learnable soft links to discover unseen relations.
5) Scalable architectures: explore deeper or hierarchical

GAT variants with careful regularization.
6) Data expansion and transfer: build larger, more diverse

corpora and study domain adaptation.
7) Interpretability: provide clearer explanations of how

relations and roles influence predictions.
Overall, SS-GAT is a practical and extensible approach that

aligns model decisions with dialogue structure. With better
annotations, temporal cues, richer role representations, and hy-
brid attention, future versions can deliver stronger performance
while preserving interpretability and efficiency.
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