MindTrack: Extracting Thematic Structures via
Self-Attention

Charoonroj Amornpativet
Department of Computer Engineering
Chulalongkorn University
Bangkok, Thailand
charoonroj.amo@gmail.com

Abstract—This paper introduces MindTrack, a novel method
for extracting thematic structures from text by leverag-
ing self-attention mechanisms. The approach involves extract-
ing keyphrases from each sentence, identifying a central
source keyphrase, and inferring semantic relationships between
keyphrases to build a thematic tree structure. The framework
combines unsupervised keyphrase extraction with semantic re-
lation modeling to construct interpretable topic maps without
relying on external annotations or supervised learning.

I. INTRODUCTION

In conversations and meetings, identifying the current topic
of discussion at any given moment, understanding its connec-
tion to prior dialogue, and tracking thematic progression are
crucial. Traditional note-taking or summarization approaches
are typically static and linear, lacking the capacity to capture
the dynamic and evolving nature of human conversations. In
contrast, dynamic thematic tracking focuses on capturing the
ongoing topic of each sentence, identifying where it originated
in the conversation, and mapping how topics emerge, shift, or
converge.

To represent this thematic structure clearly and intuitively,
we propose the generation of a Topic Map from the input text.
Similar to concept maps and discourse graphs [1], [2] , which
have been used to visualize knowledge and textual coherence,
a Topic Map visualizes the core ideas and their interrelations
as a mind map. This approach provides users with a high-
level overview of the content, along with the ability to drill
down into subtopics and explore how different parts of the text
contribute to the overall meaning. It serves as both a summary
and a cognitive model of the structure of the conversation or
the article.

At the core of our proposed method, MindTrack, lies
the self-attention mechanism introduced in Transformer-based
language models [3]. Self-attention allows a model to compute
contextual relationships between all token pairs in a sequence,
assigning weights (attention scores) that reflect the impor-
tance of one token to another. In our system, we use these
attention scores, along with multiple scoring algorithms, to
extract keyphrases, determine their source segments within
the text, and identify semantic links between concepts. This
process forms the basis for generating the Topic Map in an
unsupervised manner.
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The main advantage of this approach is that it can leverage
powerful pre-trained language models, which already encode
rich semantic information from large text corpora. This re-
duces the need for manual feature engineering or labeled data.
In addition, attention-based methods are flexible and scalable
and are capable of handling long and complex documents.
However, a significant drawback is interpretability, as attention
weights do not always reflect true model reasoning [4].

In this paper, we introduce MindTrack as a framework for
extracting thematic structures using self-attention mechanisms.
We present our methodology for identifying topics and build-
ing topic maps, discuss the advantages and limitations of
attention-based extraction, and demonstrate the effectiveness
of our approach through qualitative and quantitative analysis
on conversational and textual data.

II. LITERATURE REVIEW AND BASED CONCEPT

The design of MindTrack is founded upon two fundamental
concepts essential for generating a summary Topic Map: (A)
keyphrase extraction using self-attention mechanisms, and (B)
semantic relation extraction for constructing structured topic
graphs. These concepts enable the system to identify mean-
ingful content and understand how it is interconnected, which
are crucial for effective topic tracking and summarization.

A. Keyphrase Extraction Using Self-Attention

Transformer-based models such as BERT [5] and GPT [6]
produce self-attention maps that capture interactions between
tokens within a sequence.SAMRank (Self-Attention Map
Rank) [7] is an unsupervised method that utilizes these at-
tention maps to identify and rank keyphrases based on their
interaction within the context of the entire text.

SAMRank calculates two types of attention-based scores
for each candidate keyphrase. The first is the Global Atten-
tion Score, which measures how much attention a keyphrase
receives from other tokens. This reflects the prominence or
centrality of the phrase in the attention distribution. The
second is the Proportional Score, which measures how much
attention the keyphrase gives to other tokens, capturing its
contextual influence within the text. By summing these two
components, SAMRank computes a final importance score for
each keyphrase and ranks them accordingly.



Because it relies only on the attention scores from a
single layer and head of a pretrained model, SAMRank
does not require annotated data or task-specific training. This
makes it suitable for general-purpose, unsupervised keyphrase
extraction. MindTrack adopts a similar approach to rank
keyphrases in both conversational and document-based text.
These keyphrases are then used as nodes in the Topic Map,
enabling structured and interpretable thematic tracking.

B. Semantic Relation Extraction

In addition to identifying keyphrases, constructing a Topic
Map requires understanding the relationships between them.
Semantic relation extraction links key concepts, forming edges
in the map that express topical flow and conceptual connec-
tions.

Prior work by Sornlertlamvanich and Kruengkrai explored
semantic relation extraction within a structured cultural
database, combining named entity recognition with rule-based
templates to generate tuples like (subject, relation, object).
These tuples were used to build knowledge maps representing
structured information such as infoboxes or cultural metadata.
Their approach achieved high accuracy in a limited, well-
defined domain by applying domain-specific templates and
constraining relation extraction with entity types. [8]

Although our goal of extracting meaningful semantic rela-
tionships is similar, MindTrack uses a different approach tai-
lored for open-domain, unstructured content like conversations
and articles. Instead of predefined templates or entity types, we
identify relationships between keyphrases by analyzing atten-
tion maps. We identify connections by seeing which relation
phrases get the most attention from each keyphrase. These
attention-based links form the foundation of our network
of relationships, enabling a flexible, unsupervised approach
without relying on domain-specific rules or manual labeling.

III. MINDTRACK ALGORITHM

The overall process begins by applying a refined version
of SAMRank to extract the top-k keyphrases from each
sentence. These keyphrases are then used to identify potential
source keyphrases and analyze their semantic relationships
with other keyphrases. For each sentence, semantic links are
inferred based on attention analysis. Finally, all relationship
data across sentences are aggregated to construct a global
semantic structure.

A. Candidate Generation

Our method uses two types of candidates: keyphrases and
relation phrases.

Both types are extracted using the same tool, a
regexParser, but with different grammar rules. For
keyphrases, the parser uses patterns designed to identify noun
phrases and other informative content units. For relation
phrases, the grammar is tailored to capture typical relational
expressions, including verb phrases and prepositional phrases.

By using the same parser framework with tailored gram-
mars, we efficiently extract both types of candidates needed
for downstream semantic relation analysis.

B. Self-Attention Map Extraction

We employ a GPT-based model for attention map extraction
because of its causal attention mechanism. This architecture
permits processing the entire context simultaneously without
recalculating prior attention scores as new sentences or tokens
are introduced. The causal nature ensures that each token
attends only to itself and the tokens before it, preserving
consistency in attention values across the sequence.

For each sentence of interest, we extract the attention
map from the beginning of the context up to the end of
that sentence. This design reflects the fact that, during a
conversation, we do not have access to future utterances,
only the dialogue history. Since the past is essential for
understanding meaning and tracking semantic flow, including
the full preceding context helps capture more accurate and
relevant attention patterns.

However, GPT models often exhibit a positional bias, as-
signing disproportionately high attention to the first token in
the input sequence. As a result, keyphrases containing the first
token often receive inflated scores and consistently rank at the
top. SAMRank mitigates this by setting one of the first token’s
scores to zero. While this suppresses the bias, it also penalizes
keyphrases that legitimately include the first token, causing
their scores to drop unfairly.

To address this bias, we prepend a padding token (”.”) to the
beginning of the context. This simple adjustment ensures that
the first actual keyphrase appears after the artificial padding,
allowing it to compete more fairly with others without being
affected by the model’s positional bias.
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Fig. 1: GPT-2 Attention Heatmap

In Figure 1, we can see that almost every token pays very
high attention to the first token in the input, demonstrating the
positional bias of GPT-2 [9].

In contrast, Figure 2 shows the effect of prepending a
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padding token (”.”) at the start: the first actual token now



- 1.0

The

0.8

brown quick

0.6

fox

Query

-04

over jumps

the

-0.2

lazy

dog

! | ! ' ' I I I l -0.0
The quick brown fox jumps over the lazy dog

Key

Fig. 2: GPT-2 Attention Heatmap (with padding)

appears after the padding, and we ignore the padding when
calculating the final score. This adjustment reduces the undue
influence of the first token, allowing attention scores to be
distributed more evenly among tokens and keyphrases.

C. Extracting Top-k keyphrase

For each attention map corresponding to a sentence of
interest, we compute token-level scores using a refined version
of the SAMRank scoring strategy. This involves calculating
two components: the global attention score and the propor-
tional score based on backward redistribution. In this step, the
attention received by a token is redistributed proportionally to
the tokens it attends to, effectively tracing influence backward
through the attention flow.

1) Global Attention Score:

G, =Y Aji
j=1

where Aj; is the attention weight from token j to token ¢, and
n is the number of tokens in the document. This represents
the total attention received by each token.

2) Proportional Score:

Y Bji

where B represents redistributed attention weighted by the
global importance scores, and B’ is its normalized version
ensuring each column sums to one.

3) Phrase-level Score:

Sti = Gti + Pti

P, =Y Bj;, where B=Adiag(G), B} = J
j=1

The score at the token-level is determined by the sum of the
global attention score G, and the proportional attention score
P, of each token.

Sp, =Y S,

1€ Py
The score at the phrase-level is calculated as the sum of the

final importance scores of the tokens that make up the phrase
P.

Sp=Y_ Sp,

kepP

The final score at the phrase-level is calculated as the sum of
the phrase scores at each location where the phrase appears in
the document.

We then focus only on the tokens within the sentence of
interest, compute scores for all candidate keyphrases based on
their constituent token scores, and select the top-k keyphrases
with the highest scores for further processing.

D. Source and Relationship Extraction

Inspired by the global attention score in SAMRank, we
compute attention scores for relationship extraction using only
the top-k keyphrases identified in the previous step. Specifi-
cally, for each keyphrase, we extract its outgoing attention to
other tokens within the same sentence’s attention map. This
allows us to focus on how each keyphrase distributes attention,
rather than computing scores from all tokens.

Given a set K C {1,...,N} x {1,...,N} containing
tuples (j,n) that represent the start and end token indices of
keyphrases (which may appear multiple times in the sentence),
we define the global attention score .S; for token i as:

S= Y. > A

(n)EK k=3

where A;; is the attention weight from token j to token 4.
We then compute phrase-level scores in two separate ways,
depending on the type of phrase being evaluated:

o Source phrase scoring: For each candidate source phrase
P3¢, we calculate the score by summing the token-level
scores of all tokens in the phrase:

se=3 8,

i€ pye

e Relation phrase scoring: Similarly, for each candidate
relation phrase P!, the phrase score is:

S;el _ Z Sti

i€ Pl

These two sets of scores are used independently: the source
phrase is selected by choosing the phrase with the highest
score from the source phrase scoring step, while the relation
phrase is selected by choosing the relation phrase with the
highest score from the relation phrase scoring step.

Before choosing the highest-scoring phrase, we first sum
the scores of all phrases that have the same text, following the
same aggregation process as in SAMRank. For example, if



the phrase “the dog” appears more than once in the sentence,
we add the scores of every occurrence. The final scores are
calculated as:

S;rc — Z Szrc

seP
rel __ rel
s =Y s
reP

where P is the set of all phrases with identical text in each
category (source or relation).

E. Mind Map Assembly

We start from the latest sentence and go backward to the first
sentence. For each sentence, we find the source and relation
of each keyphrase. If the source keyphrase does not appear in
the top-k keyphrases of the sentence it belongs to, we add it
so that we can continue tracking its source and relation.

By doing this recursively, we can get the full source and
relationship chain of each keyphrase. The final result forms a
tree structure.

IV. EXPERIMENT AND EVALUATION
A. Comparison with refined SAMRank

We compare the performance of the original SAMRank
scoring with our refined version, which includes context
padding. In the original setup, the first token in the input
sequence tends to receive disproportionately high attention
scores due to the nature of the GPT attention mechanism.
SAMRank addresses this by manually setting one of the scores
of the first token to zero. However, this approach can unfairly
lower the score of keyphrases that actually include the first
token.

Our modification circumvents this issue by adding a padding
token (”.’) at the start of the input sequence. This shifts
the actual content away from the first position, allowing
keyphrases that appear early in the sentence to compete fairly
without artificial penalty.

To evaluate our method, we use the same datasets as in the
original SAMRank work: Inspec [10], SemEval-2010 [11], and
SemEval-2017 [12]. Table I summarizes the statistics of these
datasets.

TABLE I: Statistics of datasets

Statistic Inspec | SemEval2010 | SemEval2017
Docs 500 100 493
Avg. Words 135 1589 194
Avg. Sents 6 68 7

Avg. Keys 9 12 17
Unigram (%) 13.47 19.52 24.59
Bigram (%) 52.66 54.57 33.61
Trigram (%) 24.86 19.02 17.40

We evaluate performance by extracting the top keyphrases
from the input context, measuring the effectiveness of our
method, comparing the unpadded (original) and padded (mod-
ified) versions to highlight the impact of this change. Table II
presents the performance comparison between the Baseline
and With Padding approaches across different datasets.

TABLE II: Performance comparison between Baseline and
With Padding on different datasets

[ Dataset [ Fl1@5 [ F1@10 [ F1@15 ]
Baseline
Inspec 34.42 39.83 39.88
Semeval-2010 16.42 19.58 18.93
Semeval-2017 | 24.86 34.80 38.80
With Padding
Inspec 34.58 39.66 39.92
Semeval-2010 | 16.49 19.40 19.16
Semeval-2017 | 24.84 34.77 38.76

B. Comparison with Other Approaches (Visualization)
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Fig. 3: Comparison on: “Alice is eating a burger. This girl
loves to play in the garden.”

Additional topic maps extracted from other example sen-
tences using our method are provided in Appendix A.

V. DISCUSSION

Traditional tree-based dependency parsers such as
Stanza [13] and spaCy [14] are effective at identifying
intra-sentence syntactic relations but fall short when it comes
to linking concepts across sentence boundaries. In contrast,
our method captures inter-sentence keyphrase relationships
by leveraging attention scores derived from the model’s
internal representations. This enables meaningful links
between semantically related phrases across sentences, such
as connecting ”Alice” and “girl” in the input Alice is eating
a burger. This girl loves to play in the garden.”

In contrast to systems utilizing external knowledge graphs
like ConceptNet [15], our method infers semantic relationships
directly from attention patterns without requiring additional
resources. This characteristic renders the method lightweight
and adaptable to domains lacking curated knowledge bases or
where such resources are incomplete.

However, this attention-only approach introduces inter-
pretability challenges. The model does not determine whether
a keyphrase is contextually grounded or arbitrarily introduced.
For example, in the input “The cat eats fish. The dog eats
meat,” it may link “dog” with “cat” despite a weak semantic
connection. Since the model lacks discourse-level reasoning or
syntactic structure, it cannot reliably determine whether two



keyphrases are truly related in meaning or simply appear in
nearby sentences. This can result in incorrect or unsupported
links, especially when keyphrases are introduced without clear
contextual connection.

In addition, while the performance differences between the
baseline and the padding-based approach are relatively small,
we argue that the latter may yield better results in practice.
This is because keyphrases in the evaluation datasets tend not
to appear at the beginning of sentences, where attention biases
can unfairly affect their scores. Padding helps mitigate this
issue, enabling early keyphrases to compete more fairly during
extraction.

VI. CONCLUSION AND FUTURE WORK

Our approach leverages raw attention scores from GPT-
based models to extract keyphrases and infer semantic rela-
tionships, providing a lightweight and unsupervised alternative
to traditional syntactic parsers and knowledge-graph-based
systems. Unlike tree-based dependency parsers such as Stanza
or spaCy, which are limited to intra-sentence analysis, our
method captures inter-sentence relationships, enabling broader
semantic linking. It also operates without relying on external
resources like ConceptNet, making it adaptable to open-
domain or low-resource settings.

Compared to prior work like SAMRank, which uses atten-
tion maps for ranking keyphrases, our method extends this idea
by identifying connections between keyphrases based solely on
internal model signals. This general-purpose strategy does not
require labeled data or domain-specific rules, making it easy
to replicate and apply across various types of texts.

We also introduced padding-based input formatting to re-
duce position-based attention bias during keyphrase extrac-
tion. Although the performance differences are small, this
adjustment may improve fairness in identifying keyphrases
that appear as the starting phrase of a sentence.

The approach outlined in this work may be useful in various
applications such as document summarization and semantic
search, where identifying connections between related con-
cepts across sentences can improve coherence and relevance.
It may also support educational tools by highlighting relation-
ships between ideas in reading materials or assisting in the
generation of concept-based question-answer pairs.

Future work will involve more extensive quantitative evalu-
ations across diverse domains and datasets. In addition, further
exploration of specific attention heads and layers in GPT-based
models may reveal components that specialize in functions
such as topic clustering or source attribution. Understanding
these mechanisms could lead to more interpretable and task-
specific systems for semantic analysis.
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APPENDIX A
MINDMAP ATTENTION VISUALIZATION

This appendix illustrates the attention-based mindmaps gen-
erated by our method using GPT-2 attention heads.

Our method extracts Top-k keyphrases and relation phrases
from layer 11, head 1, while the source phrases come from
different heads at the same layer to study their effect on
relation extraction.

We use two example sequences to demonstrate this:



1) ”Tom cut a plank. He drilled a hole. He added a screw. Using head 10 (Figure 4), the token “he” incorrectly attends
He painted the wood. He moved the shelf.” to "plank” instead of “Tom”, and “screw” points to “hole”
2) A boy walked through the park. Leaves covered a rather than “he”. When switching to head 12 (Figure 5), the
narrow path. A wallet lay near a bench. The boy picked relation between “screw” and ’he” improves, but "wood” then
up the wallet. A card showed a name and number. The incorrectly attends to “hole”, indicating trade-offs in source

boy ran to a guard booth.” phrase selection depending on the head.
walk through— boy ran t
tom
I
cuta
'L ¥
park card guard booth
plank
showed a
b4
b4
narrow path number
| he —|
drilled a | moved
painted
b4
wallet
hole wood shelf
|
lay mear
4
bench
SCrew

C Fig. 6: Mindmap for sequence 2 (Boy story) using source from
Fig. 4: Mindmap for sequence 1 (Tom story), source phrase layer 11, head 10.

extracted from attention at layer 11, head 10.

Figure 6 shows the mindmap for the second sequence
with source phrase extraction from head 10. This example
demonstrates more consistent attention alignment, likely due
to clearer referents and sentence structure.
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Fig. 5: Mindmap for sequence 1 (Tom story), source phrase
extracted from attention at layer 11, head 12.

Figures 4 and 5 show the mindmaps for the first sequence
using different heads for source phrase extraction.



