Character Cluster Based Thai Information Retrieval

Thanaruk Theeramunkong® Virach Sornlertlamvanich?

Thanasan Tanhermhong* Wirat Chinnan*

! Information Technology Program, Sirindhorn International Institute of Technology, Thammasat University
P.O. Box 22 Thammasat Rangsit Post Office, Pathumthani 12121, Thailand
2 Software and Engineering Laboratory, National Electronics and Computer Technology Center (NECTEC)
National Science and Technology Development Agency (NSTDA)
Gypsum Metropolitan Tower 22nd Floor 539/2 Sriyudhya Rd., Rajthevi, Bangkok 10400 Thailand

Email: ping@siit.tu.ac.th| virach@nectec.or.th|

Abstract

Some languages including Thai, Japanese and Chinese do not have explicit word boundary. This causes
the problem of word boundary ambiguity that results in decreasing the accuracy of information retrieval.
This paper proposes a new technique so-called character clustering to reduce the ambiguity of word
boundary in Thai documents and hence improve searching efficiency. To investigate the efficiency, a set
of experiments using Thai newspapers is conducted in both non-indexing and indexing searching
approaches. The experimental results show our method outperform the traditional methods in both non-

indexing and indexing approaches in all measures.

Keywords: Character Cluster, Thai Document, Indexing and Non-indexing information retrieval

1 Introduction

Recently, along with the fast progress of information
systems, there has been rapid growth of building large
electronic text documents, such as electronically-published
newspapers, on-line distributed documents (hypertext) on
the World Wide Web and so forth. This motivates the need
of developing efficient searching algorithms used in
information retrieval systems to find required information
from large-scaled documents. While there have been a lot
of various efficient search algorithms developed for
English documents , these algorithms may be directly
used for other languages. However, due to idiosyncrasies
of each individual language, directly applying such
algorithms may not be suitable for the language considered.

Many languages including Chinese, ancient Greek,
Chinese, Japanese and Thai have no explicit word
boundary delimiters. To build an information retrieval

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies and not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and / or a fee.
Proceedings of the 5th International Workshop Information
Retrieval with Asian Languages

Copyright ACM 1-58113-300-6/00/009 ... $5.00

system for these languages, the process of word
segmentation is needed. However, processing these
languages suffers with word boundary ambiguity. This
causes the reduction of searching accuracy, such as during
full-text search.

To solve this problem in Thai language, this paper
proposes a new technique to improve searching efficiency
by grouping Thai contiguous characters into inseparable
units, so called Thai Character Clusters (TCCs), based on
the Thai language spelling features. A TCC is an
unambiguous unit that is smaller than a word and cannot be
further divided. Comparing with word segmentation, there
is no ambiguity in determining the TCC and can be
realized by utilizing only a set of simple rules based on
types of Thai characters, while determining words is not an
easy task due to word boundary ambiguity.

To investigate the merits of TCC, the framework is applied
to full-text search for Thai documents. However, TCC is a
general concept that can be applied in any other
information retrieval (IR) algorithms. In this research, both
non-indexing and indexing full-text searching approaches
are explored. As the non-indexing approach, brute-force
and Boyer-Moore methods [ﬂ are explored. One-character-
indexed inverted files [[3] and sorted sistring arrays (also
called, PAT array) E] , are investigated as the indexing
approach. The proposed framework is evaluated using a
pre-segmented corpus, called ThaiTax, and Thai
newspapers.

mailto:ping@siit.tu.ac.th
mailto:virach@nectec.or.th

In the rest of this paper, section 2 explores some previous
works in Thai IR and full-text searching algorithms.
Section 3 illustrates the TCC concept. In section 4, full-text
search with TCC and the merits of TCC in this task are
described. Experimental results and discussions are shown
in section 5. The last section gives the conclusion.

2 Previous Works

2.1 Information Retrieval for Thai Documents

At present, there are still very few researches on
information retrieval (IR) for Thai language. Kanlayanawat
et al. IEI proposed a method for indexing Thai text with
unknown words using a trie structure. Due to no explicit
word boundary delimiter in Thai language, the method
applied a word segmentation algorithm to segment a given
text to a sequence of words, and to sistrings (semi-infinite
strings) in the case of unknown words. The index of the
obtained words was kept in an original trie structure.
Although a way to deal with unknown words was
suggested in this research, only theoretical evaluation was
conducted. As another work, Mitrapiyanuruk et al. [E]
developed a full-text search engine for large-scaled Thai
text database. The approach used an inverted file where the
index was kept in the form of a double array trie |EI The
index was constructed by keeping the words resulted from
a word segmentation algorithm in a trie structure. In the
case of segmentation ambiguity, all of the possible
combinations were kept. Both of these works applied
dictionary-based word segmentation to divide a contiguous
string into words. They could deal with the problems of
unknown words by keeping their sistrings, and
segmentation ambiguity by storing their all possibilities.
Although these methods seem to work well in Thai full-text
search, there are a number of disadvantages: (1) it is
impossible to search, from the text database, for words that
are not found in the dictionary, (2) some irrelevant texts are
retrieved when the search keyword is a substring across the
word boundary of that string. For instance, if the search
keyword is ‘das’ (litre), the string “nis-nda-s10-n1s™ (program
production) are found. This result is incorrect because the
last character of the keyword ‘s’ cannot treat separately
from the next character ‘v’ in the text, (3) some irrelevant
texts are also retrieved when a search keyword is a
substring of an unknown word. For example, when “ih’
(target) is an unknown word in the text database and the
user wants to find ‘fh’(aunt), texts including “dh’ (target)
will be retrieved. This is also incorrect because the first
character “” of “dh’ (target) cannot be separated from the
rest “fh’.

The first problem prevents you from getting some needed
documents while the next two problems provide you some
excess irrelevant documents. Among these, the first
problem can be solved automatically if one applies full-text

! For clarity’s sake, a meta symbol ‘- is inserted to indicate the
word boundary. It does not exist in the actual

search without using a dictionary, e.g., string search, but
the next two problems still remain. To cope with all
problems, this paper proposes a framework to group Thai
contiguous characters into inseparable units. These units
are called Thai Character Clusters (TCCs) and can be
generated by a set of simple rules based on types of Thai
characters as shown in the next section.

2.2 Full-Text Search with/without Index

Although there are a lot of merits in using keywords
extracted from documents as indices for information
retrieval (IR) systems, full-text search is still demanded. It
can be used as both direct search for keywords in large
amounts of text, and a complementary part of IR systems
for filtering of potential matches or for searching retrieval
terms that will be highlighted in the output. The non-
indexing approach, e.g. the brute-force algorithm, the
Knuth-Morris-Patt algorithm E] and the Boyer-Moore
algorithm [E conducts the search through the original text.
Merits of this approach are that there is no additional
storage needed to keep index and no additional process to
perform when the original text is modified. On the other
hand, the indexing approach, such as inverted file using a
trie structure, B-trees or sorted array , requires a process
to build an index and needs some additional storage to keep
the generated index. However, in general, it can conduct
the search much faster than the non-indexing approach
does.

ol o2 o3 o4
A A A A
Upper vowel Fropt vowel | Tone [Rear vowel

¢ Karan\‘ ¢ N

Uppér level

Middle level

COw.

N !&%}/ﬁ
CURR Al ~

Lower level

Lower Vowel Consonant

Figure 1: An example of Thai characters

3 Thai Character Cluster (TCC)

Like some oriental languages such as Pali and Sangskrit,
the Thai language has a various types of characters
comparing with English, i.e., vowels, consonants, tones and
some other special characters. In addition, Thai characters
are located in three levels: upper, middle and lower levels.
Figure 1 illustrates an example of a Thai phrase consisting
of three words. In this example, there are three levels and
seven types of characters: upper/lower/front/rear vowels,
consonant, tone and karan (a pronunciation deletion

character). a1, 02, o3 and o4 indicate word boundaries.
Note that there is no space between the words. That is, a
word segmentation algorithm is needed. Most algorithms
are based on exploiting a dictionary ﬂm[@ The
fragile case for word segmentation is needs
semantic background for making decision. For example, ‘m
naw’ can be segmented as ‘m-naw’ or ‘mn-aw’. The correct
segmentation depends on the context. Moreover, if the
sequence on focus is composed of unknown words, it is
very hard to segment it into words, and only sistrings of the
sequence can be kept instead. To overcome the problem,
this research proposes a concept of character cluster, which
is a unit smaller than a word but larger than a character. We
call this “Thai Character Cluster (TCC)’. The composition
of TCC is unambiguous and can be defined by a set of
rules. For example, a front vowel and the next character
have to be grouped into a same unit. A tonal mark is
always located above a consonant and cannot be separated
from the consonant. A rear vowel and the previous
character have to be grouped into a same unit. The rules for
segmenting into TCCs can be represented in EBNF form.

=

<TCC> = “A’|“8" |

| <Cons> ‘55" ,<Cons> * *
| <Cons> <BCons> <Cons> *
| <Cons> <TCC1> <Karan>
| <FSara><Cons> <TCC2> <Karan>
<TCC2> > <Cons>‘ 1z’
|* ¥ *<BCons>
| <USara>{<Tone>}<BCons> [*1’ | «¢’]
| {<Tone>}[*1| 1’| «¢’]
<TCC1> - <DSara> {<Tone>}
| {<Tone>} * +1 ’
[[<7 "] ™ "] {<Tone>}<BCons>
| {<Tone>* 1+
| %" <BCons>
|[<Tone>[<TSara>|<DSara>]{‘2’}<BCons>
|+ = *{<Tone>{<BCons>}}
| = <Tone>
| {<Tone>} <Bsara>
| NULL
<Karan> > <Cons>{<Cons>}{[<DSara>|< ~']}* "
| NULL

Figure 2: All rules for TCC Segmentation

Figure 2 shows all rules used for TCC segmentation. Here,
<FSsara>, <TSara>, <USara> and <DSara> represent a
front vowel, a rare vowel, a upper vowel, and a lower
vowel, respectively. <Cons> is a consonant that can be the
first consonant of a word, <BCons> is a consonant that can
be the second consonant of a word, <Tone> is a tonal mark,
<Karan> is a special character named ‘karan’. All the
characters within “ * are Thai characters. For example, in
figure 1, “iigaiildds’ can be divided into “ii-gni-18-s2” by these
rules. Note that the string is almost correctly separated into
words.

4 Approaches in TCC-based IR

In this paper, the TCC framework is applied to full-text
search algorithms in both non-indexing (i.e., string search)
and indexing approaches. This section briefly describes the
algorithms.

4.1 Non-Indexing Approach

As the non-indexing approach, brute-force and Boyer-
Moore algorithms are explored. The brute-force algorithm
is the simplest approach for string searching. The idea
consists of simply trying to match any substring of length
m in the text with the given m-length pattern from left to
right.

The Boyer-Moore algorithm E] positions the pattern over
the leftmost characters in the text and attempts to match it
from right to left. If no mismatch occurs, then the pattern
has been found. Otherwise, the algorithm computes a shift;
that is, an amount by which the pattern is moved to the
right before a new matching attempt is undertaken. This
shift action makes it possible to avoid a lot of unnecessary
comparisons which may occur in the brute-force algorithm.

4.2 Indexing Approach

Here one-character-indexed inverted files and sorted
sistring (semi-infinite) arrays are investigated as the
indexing approach. The concept of inverted file type index
is to collect all keywords (attributes) and form a sorted list
(or index) of the keywords (attributes), with each keyword
having links (positions) to the documents (texts) containing
that keyword. The inverted file concept applied here is to
use a single character as an index to all positions where the
character is located in the documents. Retrieving a pattern
from the documents is to (1) look up each character in the
pattern from the index table, (2) get the positions for each
character, (3) find the minimum positions among those of
the characters in the pattern, and (4) then compare the
pattern with the strings at those positions in the original
documents.

In the second method, the sorted sistring array is applied as
a searching index to the documents. The sorted sistring
array is a sort listed of all sistrings in the documents. This
array is similar to a PAT array (also called a suffix array)
[E. To find a specified pattern in the documents is to

perform an indirect binary search over the array with the
results of the comparisons being less than, equal, and
greater than. This process takes time O(log, n), where n is
the length of the document.

4.3 TCC-based IR

The concept of TCC can be applied directly to both non-
indexing and indexing approaches. For the non-indexing
approach, the original document is processed by the rules
described in section 3 to group characters in the document
together to form character clusters. Instead of including
characters, the newly generated document, for sake called a
TCC document, is composed of character clusters. The
original search algorithm can directly be applied on the
TCC document. As the second option, the search process
performs on the original document but later the searching
results will be checked by the rules in section 3.

In the same way, for the indexing approach, the original
document is processed by the rules to form a TCC
document, and then the original index creation algorithm
can be directly applied on the TCC document. The
searching process is the same as the original one.
Exploiting the TCC concept, the three following problems
of traditional methods (refer to section 2.1) can be solved.

1. The relevant documents are not retrieved when the
query word A is a substring of the word B, which is
found in the dictionary.

A=pB
B =aBy
where a, and y are substrings.

2. The irrelevant documents are retrieved in the case that
the query word A is a substring of a string B in the
document but B is not morphologically breakable.

A=
B = oy

where a, B and y are substrings, and By or af is
morphologically unbreakable.

3. The irrelevant documents are retrieved in the case that
the query word A is a substring of an unknown word
B in the document.

A=
B = oy

where o, Band y are substrings and ofy is
morphologically unbreakable word.

The first case can be solved by full-text search. The second
and third cases are very similar except that A and B in the
third case are both TCCs but both in the second case are
not. The concept of TCCs can solve all of the three

problems because TCCs are helpful to suggest that A
cannot be a substring of B.

5 Experimental Results

To evaluate of the proposed framework, three kinds of
experiments are conducted. These experiments are
designed to check the following performance:

1. The accuracy of IR with/without TCC

2. The improvement of searching time when TCC is
introduced, and

3. The time and storage overhead that the indexing
approach has to compensate comparing with the non-
indexing one.

In the first experiment, the Thai Royal Institute Word
dictionary (RIWord) and the ThaiTax corpus (Thai
Revenue Code) are used for evaluating the searching
accuracy. There are 32,558 words in RIWord. ThaiTax is a
manually-word-segmented corpus, which composes of
594,526 words with 2,743 distinct words.

In the last two experiments, the corpus used is taken from
Thai newspaper named “Thanweek”. The corpus is
constructed by excluding English words or symbols from
the original in order to test the efficiency on a pure Thai
document. The corpus is totally 28 MB large. In the second
experiment, the results of searching speed of brute-force,
Boyer-Moore, inverted file, sorted sistring are compared in
the dimension of IR with and without TCC. The indexing
approach, i.e., inverted file and sorted sistring, requires
some additional storage to keep an index. The last
experiment is done to examine the time and memory
consumption in creating and modifying (inserting and
deleting) the index.

RIWord | ThaiTax
No. of TCCs (NO) 1731 402
No. of smaller TCCs (N1) 290 24
No. of larger TCCs (N2) 592 28
No. of errors (N3) 759 29

Table 1: The number of TCCs in RIWord and ThaiTax

5.1 Evaluation of IR Accuracy

A word, which is equivalent to a TCC and also a substring
of another TCC words, frequently causes an error in IR.
Firstly, we examine the number of words of this type. To
do this, the RIWord dictionary and ThaiTax corpora are
segmented into TCCs by the rules described in section 3.
As a result, a list of segmented units (TCCs) is obtained.
Among TCCs in the list, this experiment focuses on the

words which are equivalent to TCCs in RIWord or
ThaiTax. Table 1 shows the total number of distinct TCCs
(NO), the number of distinct TCCs which can be substrings
of other TCCs (N1), the number of distinct TCCs some
substrings of which are TCCs (N2) and the number of
errors that occur when N1 are used for searching but N2
are retrieved if TCCs are not applied (N3).

From 32,558 words in the RIWord, 1731 words (NO) are
TCCs. Among this number, 290 words (N1) can be
substrings of some other words and 592 words (N2) have
some other words as their substrings. 759 combinations
(N1,N2) are the errors occurred when N1 are used for
searching but N2 are retrieved as their results. The ThaiTax
consists of much fewer words, i.e. nearly 2743 distinct
words, but only 402 words are TCCs. That is, the ThaiTax
is roughly segmented. Its N1, N2 and N3 are 24, 28 and 29,
respectively. This result shows the amount of the third
problem shown in section 4.3.

Precision (%)

TCC RIWord ThaiTax

All NO N1 All NO N1

No 58.63 | 42.39 | 1543 | 85.69 | 77.00 | 13.21

Yes 79.37 | 100.0 | 100.0 | 94.04 | 100.0 | 100.0

Table 2: Searching accuracy with/without TCC

Table 2 shows the searching accuracy of IR with and
without TCC. Here, the ThaiTax corpus is used as a test
corpus for testing the searching accuracy. The table shows
only the precision because in all cases the recall is 100%.
‘All’ means all of words extracted from RIWord (or
ThaiTax) are used for the search and the numbers in the
column show the averages of the searching results. ‘N0’
means only the words, which are TCCs, are used for
searching. ‘N1’ means only the words, which are TCCs and
also substrings of some other words, are used for searching.
The result indicates that the searching precision is
improved when TCCs are applied. It is 100% in the case of
NO and N1. Without TCCs, the precision is very low,
especially in the case of words, which are TCCs and also
substrings of some other TCCs (N1). The numbers in “All’
column indicate the amount of the second and third
problems in section 4.3. The concept of TCCs improves the
precision from 58.6 % to 79.4 % for RIWord, and from
85.7 % to 94.0 % for ThaiTax. The ThaiTax gets higher
precision than the RIWord because it has fewer words in
N1 and N2.

5.2 Searching Time

The second experiment shows the improvement in
searching speed when TCC is introduced. ‘BF’ stands for
the brute-force algorithm, ‘BM’ for the Boyer-Moore
algorithm, ‘INV’ for the one-character-indexed inverted
file and ‘SSA’ for the sorted sistring array. The average
time is taken using all words with any length.

Pattern Length (chars.) Avg.
Method | TCC Time
1-10 | 11-20 | 21up | (sec)
No | 29.60 | 29.83 | 29.68 4.00
BF
Yes | 15.30 15.33 | 15.29 2.01
No | 23.28 7.06 4.70 151
BM
Yes | 17.75 6.54 3.77 1.40
No | 4.38 224 | 2.28 0.22
INV
Yes 0.41 0.34 0.02 0.03
No | .0015 .0039 | .0072 .0024
SSA
Yes | .0012 | .0029 | .0054 | .0023

Table 3: The number of string matching times
(10° times) and average searching time (seconds)

Table 3 indicates that TCC can improve all algorithms.
Both the number of string matching times and the average
searching time are shown. BF is the slowest algorithm,
gaining 2 times improvement when TCC is applied. This is
because the size of TCC document is a half of that of the
original. The BM algorithm depends directly on the length
of the search pattern. Applying TCC, the speed of BM
improves 1.0-1.3 times. TCC helps INV in improving its
index structure. Instead of using one character each, the
unit of TCC is used as an index. Consequently, searching
speed improves about 7-100 times. SSA gives the best
searching performance among the four algorithms. TCC
improves 1.0-1.4 times for SSA.

5.3 Time and Memory Consumption in Index
Creating

Though the indexing approach, i.e., INV and SSA vyields
the far better searching time performance than the non-
indexing approach, it needs an additional step to create the
index for the documents and additional storage to keep the
index. Moreover when there are some modifications in the
text database, the index has to be updated. The last
experiment shows the performance of creating the index
for the document.

Time Memory
Methods TCC (se) (bytes)

No 71 110M

INV
Yes 60 58M
No 3753 110M

SSA
Yes 3122 58M

Table 4: Time and memory consumption in creating
the index

Table 4 shows the time and memory consumption in
creating the index for INV and SSA. TCC helps in
reducing the indexing time and memory consumption in
both INV and SSA. It is about 1.2 times faster when TCC
is introduced. The memory consumption decreases to be
about 50%. Though SSA requires much more time to
create the index than INV does, SSA requires about the
same size of memory for creating the index.

Modifying an index of INV is quite simple in both
insertion and deletion while the insertion in SSA is quite
complicated because the costly sorting process is needed.
In one additional experiment, the Thansetthakij newpapers
(35 MB) is used to examine the index insertion. To add this
document to the existing index (Thanweek newspapers), it
needs around 1,200 seconds with 67MB for TCC. In the
approach without TCC, it requires up to 2,400 seconds for
the same document.

6 Conclusion

This paper proposes a technique called character clustering
to reduce the ambiguity of word boundary in Thai
documents and improve searching efficiency. A Thai
character cluster (TCC) is an inseparable unit. It can be
detected by using a set of few simple rules. Supported by
some experiments using a set of well-known algorithms,
such as brute-force, Boyer-Moore, inverted file and sort
sistring array, TCC is shown to be very helpful to reduce
searching errors. It also improves the searching time and
memory consumption. Our experiments show the
improvement of using TCC for all searching algorithms in
all measures.

The TCC framework also shows the merits in both non-
indexing and indexing approaches. The combination of
TCC and a dictionary will be explored to improve IR speed
and accuracy in our future work. TCC can also be applied
to improve the accuracy of word segmentation and spell
checking.

7 Acknowledgement

This research is partly supported by National Electronics
and Computer Technology Center (NECTEC). We would
like to thank NECTEC for permitting us to access several
useful Thai language resources including RIWord
dictionary and ThaiTax Corpora.

References

1. Frakes, W. B. and Baeza-Yates, R. Eds. Information
Retrieval: Data Structures & Algorithms. Prentice
Hall, 1992.

Boyer, R. and Moore, S. A fast string searching
algorithm. CACM, 1977, 20, pp. 762-772.

3. Harman, D., Fox, E., Baeza-Yates, R. and Lee, W.
Inverted Files. In Information Retrieval: Data
Structures & Algorithms, Eds. Frakes W.B. and
Baeza-Yates R. Prentice Hall, 1992, pp. 28-43.

4. Gonnet, G. Pat 3.1: An Efficient Text Searching
System. User’s Manual. UW Centre for the New
OED, University of Waterloo, 1987.

5. Manber , U. and Myers, G. Suffix Arrays: A New
Method for On-line String Searches. In Proceedings
of the first ACM-SIAM Symposium on Discrete
Algorithms. 1990, pp. 319-327.

6. Kanlayanawat, W. and Prasitjutrakul, S. Automatic
Indexing for Thai Text with Unknown Words using
Trie Structure. In Proceedings of the Natural
Language Processing Pacific Rim Symposium
(NLPRS’97), 1997, pp. 115-120.

7. Mitrapiyanuruk, P., Puvanich, C., Meknavin, S. and
Boriboon, M. A. Development of Full-Text Search
Engine for Large Scale Thai Text Database. In the
1999 National Science and Technology Development
Agency (NSTDA) Annual Meeting. in Thai, 1999, pp.
247-257.

8. Jun’ichi, A. Quick Digital Search for Double Array
Trie. Bit, 21/6, March 1989, pp. 776-784.

9. Knuth, D., Morris, J., and Pratt, V. Fast Pattern
Matching in Strings. In Journal of SIAM on
computing. 1977, 6, pp.323-350.

10. Kawtrakul, A., Thumkanon, C. Poovorawan, Y.,
Varasrai P. and Suktarachan, M. Automatic Thai
Unknown Word Recognition. In Proceedings of the
Natural Language Processing Pacific Rim Symposium
(NLPRS’97). 1997, pp. 341-346.

11. Mekanavin, S., Charoenpornsawat, P. and Kijsirikul,
B. Feature-based Thai Word Segmentation. In
Proceedings of the Natural Language Processing
Pacific Rim Symposium (NLPRS’97). 1997, pp. 41-46.

	1
	1 	Introduction
	2 	Previous Works
	2.1 	Information Retrieval for Thai Documents
	2.2 	Full-Text Search with/without Index

	3 	Thai Character Cluster (TCC)
	4 	Approaches in TCC-based IR
	4.1 	Non-Indexing Approach
	4.2 	Indexing Approach
	4.3 	TCC-based IR

	5 	Experimental Results
	5.1 	Evaluation of IR Accuracy
	5.2 	Searching Time
	5.3 	Time and Memory Consumption in Index Creating

	6 	Conclusion
	7 	Acknowledgement
	References

